跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/24 12:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳盈樺
研究生(外文):Ying-Hua Cheng
論文名稱:利用測高衛星、重力衛星、NCEP氣候模型估計地心與C20變動
論文名稱(外文):Geocenter and C20 variations derived by satellite altimeters, GRACE and NCEP climate model
指導教授:郭重言郭重言引用關係
指導教授(外文):Chung-yen Kuo
學位類別:碩士
校院名稱:國立成功大學
系所名稱:測量及空間資訊學系碩博士班
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:85
中文關鍵詞:地心變動GRACE衛星測高
外文關鍵詞:geocenterGRACEaltimeter
相關次數:
  • 被引用被引用:2
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
地心變動為地球質量中心相對於地球幾何中心之移動,通常以一階球諧係數表示,此變動為地球系統中質量重新分配所造成,例如海洋、大氣、陸上水體、冰川、冰原間質量交換。前人採用衛星雷射測距、全球定位系統或衛星測高資料估計地心變動量,但缺點為測站分佈不均且僅位於陸地。另外,也有研究學者使用精度無法評估之氣候模型進行地心位置變動估計,而造成估計誤差無法評估。理論上,各階球諧函數呈現正交關係,因此估計一階項時,並不受到其他階係數影響,然而,Lavalle´e等人[2006]指出未精確模式之高階係數會混疊一階係數之估計。GRACE衛星自2002年發射後,已成功且持續提供月平均之全球重力場2∼120階球諧係數解,但其中C20項精度不佳,故本研究視其為未知數進而求解。本研究結合改正steric sea level和地殼垂直變動後之衛星測高資料與GRACE重力場解進行地心位置與C20變動之估計。計算之地心變動其振幅與相位在x方向為1.2±0.2 mm和67.8±9∘,y方向為2.2±0.2 mm和337.1±4.7∘,z方向為2.5±0.3 mm和61.1±6.6∘,與Swenson等人[2008]計算之成果接近,而估計之 ΔC20其振幅與相位分別為1.1×10-10±1.2×10-12和38.7±6.9°,比GRACE觀測之ΔC20接近於SLR之結果。此外,於陸地上加入NCEP氣候模型(積雪、大氣壓力、土壤濕度資料)進行一階項係數與C20變動量估計,其結果並無明顯改善,可能原因為氣候資料誤差較大且無法預估。
Geocenter variations defined as the position of the Earth’s center of mass (CM) relative to the center of figure (CF) of the Earth’s outer space are caused by mass redistribution like the mass exchange between ocean mass, atmosphere, ice sheets, glaciers, and hydrology. In previous studies, geocenter variations were estimated using Satellite Laser Range (SLR)、Global Positioning System (GPS), or satellite altimeter measurements, but these measurements do not distribute globally and evenly. In addition, some researchers used climate models with unknown uncertainties to estimate geocenter, which causes the errors of estimated geocenter are not assessable. Theoretically, higher degree harmonics do not bias the estimate of degree one because they are orthogonal; however, Lavalle´e et al. [2006] reported that unmodeled higher degree harmonics could actually alias the estimate of geocenter variations. GRACE mission has been successfully and continually providing monthly average observations of the Earth’s gravity field since the satellites were launched in 2002. The observations are represented in form of 2~120 degree spherical harmonic coefficients, but the degree-2 coefficient is currently not well determined. In this study, we estimated geocenter and C20 variations accurately by combining the steric-corrected and loading-corrected altimeter data and GRACE solution to reduce the aliasing of higher degree harmonics to estimate geocenter variations. The annual amplitude of x-, y-, and z-components are 1.2±0.2mm, 2.2±0.2mm, and 2.5±0.3mm respectively. The annual phase of x-, y-, and z-components are 67.8±9o, 337.1±4.7o, 61.1±6.6o respectively. The computational result agrees well with Swenson et al. [2008]. Additionally, compared with GRACE-derived C20, the annual amplitude and phase of the estimated ΔC20 at 1.1×10-10±1.2×10-12 and 35.8±5.8o in this study are much closer to SLR-derived ΔC20. Finally, we join the NCEP climate model (snow, atmospheric pressure, and soil moisture data) to compute geocenter and C20 variations but the estimate is not significant improved because the error of the model may be large and not assessable.
摘要.... I
Abstract....II
誌謝....IV
目錄....VI
表目錄....VIII
圖目錄....IX
第一章 緒論....1
1.1 研究背景和動機....1
1.2 論文架構....4
第二章 測高衛星、重力衛星、海洋溫度和鹽度、地球物理模式介紹....6
2.1衛星測高....6
2.1.1衛星測高儀介紹....6
2.1.2衛星測高原理....16
2.2海洋溫度和鹽度資料....19
2.3 Gravity Recovery and Climate Experiment (GRACE)....23
2.3.1 GRACE重力衛星介紹....23
2.3.2 GRACE觀測原理....26
2.4積雪資料、土壤濕度資料、大氣壓力資料....29
第三章 地心位置和C20變動估計之理論與方法....31
3.1以海水溫度與鹽度資料計算steric sea level....31
3.2衛星測高資料計算海水質量變化....35
第四章 GRACE和SLR資料模擬地心位置與C20變動計算....48
4.1資料模擬與地心位置和C20變動計算....48
4.2成果分析....52
第五章 合併測高衛星與GRACE資料估計地心位置與C20變動....59
5.1 測高資料與GRACE資料處理....59
5.2結合衛星測高和GRACE重力場解計算地心位置與C20變動....62
5.3加入陸地資料計算地心位置與C20變動....71
第六章 結論與建議....79
參考文獻....82
AVISO, http://www.aviso.oceanobs.com/en/, Cnes, CLS.
Antonov, J. I., S. Levitus, and T. P. Boyer, Steric sea level variations during 1957-1994: Importance of salinity, J. Geophys. Res., 107(C12), 8013-8021, 2002.
Antonov, J. I., S. Levitus, and T. P. Boyer, Thermosteric sea level rise, 1955-2003, Geophys. Res. Lett., 32, L12602, doi: 10.1029/2005GL023112, 2005.
Blewitt, G., D. Lavalle´e, P. Clarke, and K. Nurutdinov, A new global mode of Earth deformation: Seasonal cycle detected, Science, 294, 2342–2345, 2001.
Blewitt, G., and P. Clarke , Inversion of Earth’s changing shape to weigh sea level in static equilibrium with surface mass redistribution, J. Geophys. Res., 108(B6), 2311, doi: 10.1029/2002JB002290, 2003.
Bouillé, F., A. Cazenave, J. M. Lemoine, and J. F. Cretaux, Geocentre motion from the DORIS space system and laser data to the Lageos satellites: Comparison with surface loading data, Geophys. J. Int., 143, 71– 82, 2000.
Cabanes, C., A. Cazenave, and C. Le Provost, Sea level changes from TOPEX/POSEIDON altimetry for 1993-1999 and warming of the southern ocean, Geophys. Res. Lett., 28, 9-12, 2001.
Chambers, D. P., S. A. Hayes, J. C. Ries, and T. J. Urban, New TOPEX sea state bias models and their effect on global mean sea level, J. Geophys. Res., 108(C10), 3305, dio: 10.1029/2003JC001839, 2003a.
Chambers, D. P., J. C. Ries, and T. J. Urban, Calibration and verification of Jason-1 using global along-track residuals with TOPEX, Marine Geodesy , 26, 305-318, 2003b.
Chambers, D. P., J. Wahr, and R. S. Nerem, Preliminary observations of global ocean mass variations with GRACE, Geophys. Res. Lett., 31, L13310, doi: 10.1029/2004GL020461,2004.
Chambers, D. P., Observing seasonal steric sea level variations with GRACE and satellite altimetry, J. Geophys. Res. 111, C03010, doi:10.1029/2005JC002914, 2006.
Chambers, D. P., M. Tamisiea, R. S. Nerem, and J. C. Ries, Effects of ice melting on GRACE observations of ocean mass trends, Geophys. Res. Lett., 34, L05610, doi: 10.1029/2006GL029171, 2007.
Chen, J. L., C. R. Wilson, B. D. Tapley, and R. J. Eanes, Low degree gravitational changes from GRACE: validation and interpretation, Geophys. Res. Lett., 31(22): L22607, doi: 10.1029/2004GL021670, 2004.
Chen, J. L., C. R. Wilson, R. J. Eanes, and R. S. Nerem, Geophysical interpretation of observed geocenter variations, J. Geophys. Res., 104 (B2) , 2683– 2690, 1999.
Chen, J. L., M. Rodell, C. R. Wilson, and J. S. Famiglietti (2005), Low degree spherical harmonic influences on Gravity Recovery and Climate Experiment (GRACE) water storage estimates, Geophys. Res. Lett., 32, L14405, doi: 10.1029/2005GL022964, 2005.
Cretaux, J.-F., L. Soudarin, F. J. M. Davidson, M.-C. Gennero, M. Berge-Nguyen, and A. Cazenave, Seasonal and interannual geocenter motion from SLR and DORIS measurements: Comparison with surface loading data, J. Geophys. Res., 107(B12), 2374, doi: 10.1029/2002JB001820, 2002.
Crowley, J. W., J. X. Mitrovica, R. C. Bailey, M. E. Tamisiea, and J. L. Davis, Land water storage within the Congo Basin inferred from GRACE satellite gravity data, Geophys. Res. Lett., 33, L19402, doi: 10.1029/2006GL027070, 2006.
Dong, D, J. O. Dickey, Y. Chao, and M. K. Cheng, Geocenter variations caused by atmosphere, ocean and surface ground water, Geophys. Res. Lett., 24, 15, 1867-1870, 1997.
Eanes, R. J., S. Kar, S. V. Bettadpur, and M. M. Watkins , Low frequency geocenter motion determined from SLR tracking (abstract), Eos Trans. AGU, 78(46), Fall Meet. Suppl., F146, 1997.
Gill, A. E., Atmosphere-Ocean Dynamics, Academic Press, New York, 1982.
Guo, J.Y., Y. B. Li, Y. Huang, H. T. Deng, S. Q. Xu, and J. S. Ning, Green’s function of the deformation of the Earth as a result of atmospheric loading, Geophys. J. Int., 159, 53–68 doi:10.1111/j.1365-246X.2004.02410.x, 2004.
Han, S. C., C. K. Shum, C. Jekeli, C. Y. Kuo, C. Wilson, and K. W. Seo, Non-isotropic filtering of grace temporal gravity for geophysical signal enhancements, Geophys. J. Int., 163(1), 18-25, doi:10.1111/j.1365-246X.2005.02756.x, 2005.
Heiskanen, W. A., and H. Moritz, Physical Geodesy, W. H. Freeman, New York, 1967.
Ishii, M., M. Kimoto, and M. Kachi, Historical ocean subsurface temperature analysis with error estimates, Mon. Wea. Rev., 131, 51-73, 2003.
Ishii, M., M. Kimoto, K. Sakamoto, and S. I. Iwasakim, Historical ocean subsurface temperature analysis with error estimates-revise, Mon. Wea. Rev., 131, 51-73, 2005
Kuo, C.Y., Determination and Characterization of 20th Century Global Sea Level Rise, Ph.D. Dissertation, The Ohio State University, 2005.
Kuo, C.Y., C.K. Shum, J.Y. Guo, Y. Yi, A. Braun, I. Fukumori, K. Matsumoto, T. Sato, and K. Shibuya, Southern Ocean Mass Variation Studies Using GRACE and Satellite Altimetry, Earth, Planets and Space, 60, 477-485, 2008.
Kusche, J., and E. J. O. Schrama, Surface mass redistribution inversion from global GPS deformation and Gravity Recovery and Climate Experiment (GRACE) gravity data, J. Geophys. Res., 110, B09409, doi:10.1029/2004JB003556, 2005.
Levitus, S., J. I. Antonov, and T. P. Boyer, Warming of the world ocean, 1955-2003, Geophys. Res. Lett., 32, L02604, doi: 10.1029/2004GL021592, 2005.
Pattullo, J., W. Munk, R. Revelle, and E. Strong, The seasonal oscillation in sea level, J. Mar. Res., 88-156, 1955.
Schmidt, R. T., et al., GRACE observations of changes in continental water storage, Global Planet Change, 50, 112–126, 2006.
Shum, C. K., Y. Yi, K. C. Cheng, C.Y. Kuo, A. Braun, S. Calmant, and D. P. Chambers, Calibration of Jason-1 altimeter over Lake Erie, Marine Geodesy, 26:335-354, doi: 10.1080/01490410390253487, 2003.
Shum, C. K., S. C. Han, C. Y. Kuo, K. W. Seo, and C. Wilson, Assessment of GRACE time-variable gravity observables: A new filtering technique to enhance signal spatial resolutions, Eos Trans. AGU, 85(47), Fall Meet. Suppl., Abstract G31C-0814, San Francisco, 2004.
Swenson, S., D. Chambers, and J. Wahr, Estimating geocenter variations from a combination of GRACE and ocean model output, J. Geophys. Res., 113, B08410, doi: 10.1029/2007JB005338, 2008.
Swenson, S., J. Famiglietti, J. Basara, and J. Wahr, Estimates of Groundwater Variability in Oklahoma from GRACE and in situ soil moisture data, Water Resour. Res., 44, W01413, doi: 10.1029/2007WR006057, 2008.
Tapley, B. D., S. Bettadpur, M. Watkins, and C. Reigber, The Gravity Recovery and Climate Experiment: Mission overview and early results, Geophys. Res. Lett., 31, 9, 10.1029/2004GL019920, 2004a.
Tapley, B. D., S. Bettadpur, J. C. RP. F. Thompson, and M. M. Watkins, GRACE measurements of mass variability in the Earth system, Science, 305, 503-505, 2004b
Velicogna, I., and J. Wahr, Measurements of time-variable gravity show mass loss in Antarctica, Science, 311, 1754–1756, 2006.
Wahr, J., M. Molenaar, and F. Bryan, Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE, J. Geophys. Res., 103(B12), 30, 205-30,229, 1998.
Wahr, J., S. Swenson, V. Zlotnicki, and I. Velicogna, Time-variable gravity from GRACE: First results, Geophys. Res. Lett., 31, L11501, dio:10.1029/2004GL019779, 2004.
Watkins, M. M., and R. J. Eanes, Observations of Tidally Coherent Variations in the Geocenter, Geophys. Res. Lett., 24, 2231-2234, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top