跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/26 20:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳珮蓉
研究生(外文):Pei-rong Chen
論文名稱:纖維母細胞生長因子-9在小鼠睪丸的表現及其調控固醇類荷爾蒙生成之機轉
論文名稱(外文):The Expression Profile of FGF9 and Its Regulating Mechanism on Steroidogenesis in Mouse Testis
指導教授:黃步敏
指導教授(外文):Bu-miin Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:細胞生物及解剖學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:61
中文關鍵詞:細胞外信號調節激酶睪固酮有絲分裂原活化蛋白激酶成熟型萊氏細胞固醇類激素生合成纖維母細胞生長因子-9蛋白激酶 B史脫立細胞p38激酶c-Jun 氨基末端激酶纖維母細胞生長因子之接受器未成熟型萊氏細胞
外文關鍵詞:mitogen-activated protein kinasesSertoli cellFibroblast growth factor 9protein kinase Bfibroblast growth factor receptorstestosteronec-Jun N-terminal kinasessteroidogenesisadult Leydig cellextracellular signal-regulated kinasesp38 MAPKsimmature Leydig cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
纖維母細胞生長因子-9 (FGF9),為分泌型的肝素親和性生長因子,廣泛地表現於胚胎時期。序列比對研究指出,在兩棲類(Xenopus)、囓齒類(mice, rats)、人類中此蛋白質具有高度的相似性,顯示FGF9的重要,以及其於不同物種間可能也具有相似的功能性。依據2001年Colvin JS等學者的研究成果,剔除FGF9 基因的小鼠將發育成為帶有XY雄性基因型的雌性個體,同時其生殖腺內雄性特有的細胞〝史脫立細胞〞及〝萊氏細胞〞有大幅減少、甚至消失的現象。在敝實驗室先前的研究中發現,FGF9可以刺激未成熟小鼠的萊氏細胞生成睪固酮。這些資料顯示FGF9在睪丸的功能上具有相當的重要性。為了研究FGF9在出生後小鼠睪丸中所扮演的角色,首先以免疫組織染色法(Immunohistochemistry)去標定特定蛋白質所在的位置。結果顯示成熟小鼠的萊氏細胞的確會表現FGF9及FGF receptor (FGFR2 及FGFR3),代表著萊氏細胞可以對FGF9的刺激做出反應,此與實驗室先前的研究結果可相呼應。另外,在成熟型萊氏細胞的發育過程中, FGF9的訊號愈發明顯,而四大類的FGF receptor則呈現出各自特有的表現模式。其中,FGFR2在”未成熟型及成熟型”萊氏細胞的表現最為明顯。隨後,欲進一步探討FGF9在萊氏細胞中的胞內訊息傳遞路徑,特別是其於固醇類荷爾蒙生成之機轉,以訊息傳遞物抑制劑和西方墨點法(Western blotting)來篩選FGF receptor下游的訊息傳遞因子,同時,使用放射線免疫分析法(radioimmunoassay)來監測睪固酮生成量。結果顯示,細胞外信號調節激酶(ERK1/2)、c-Jun 氨基末端激酶 (JNK)、p38激酶 (p38 MAPKs)、蛋白激酶 B (PKB, 別名Akt)訊息傳遞路徑,可以被啟動於FGF9處理下的未成熟小鼠萊氏細胞中,並在各自特有的時間點上呈現出活化趨勢。然而在四種被FGF9所啟動的訊息路徑上,p38 MAPKs和Akt 則參與了FGF9用以調控未成熟小鼠萊氏細胞生成睪固酮的訊息傳遞路徑上。總結以上發現,在小鼠睪丸中,萊氏細胞可分泌出FGF9並藉以影響固醇類荷爾蒙之生成。
Fibroblast growth factor-9 (FGF9), a secreted heparin-binding mitogenic growth factor, is widely expressed in embryos and highly conserved in Xenopus, mice, rats, and humans. These findings suggest that FGF9 is important and may have similar functions across species. Recently, Colvin JS et al. (2001) reported that FGF9 gene knockout mice exhibit female phenotype with XY genotype, and the male-specific cell marker MIS (indicated Sertoli cells) and Scc (indicated Leydig cells) were downregulated. Our lab’s previous results demonstrated that FGF9 enhanced testosterone production (steroidogenesis) on immature mouse Leydig cells with time- and dose-dependent manners. Those data revealed a novel role of FGF9 in testicular functions. In order to investigate the crucial role of FGF9 in postnatal mouse testis, we utilize immunohistochemistry (IHC) to localize target proteins. The IHC results showed that Leydig cells express FGF9 and its cognate FGFR (FGFR2 and FGFR3) in adult mice, exhibiting Leydig cells could response to FGF9 signaling. During the development of adult Leydig cell populations, FGF9 immunoreactivity displayed elevating trend, and all four FGFRs presented different expression patterns in testicular Leydig cells. Thus, FGFR2 was prominently expressed in immature and adult Leydig cells. Furthermore, to confirm the intracellular regulatory mechanism responsible for FGF9-treated mouse Leydig cells, we adopted immunobloting and protein kinase inhibitors to analyze which downstream signal molecules of FGFR (receptor tyrosine kinase) were activated. Radioimmunoassay was also used to monitor testosterone production at the same time. The results revealed that ERK1/2, JNK, p38 and Akt could be activated by FGF9 in primary immature mouse Leydig cells with different temporal patterns. Among four activated signaling pathways, the activation of PI3K/Akt and Ras/p38 signal pathways were required for FGF9-stimulated testosterone production in primary immature mouse Leydig cells. Taken together, FGF9 might be an autocrine or paracrine substance expressed by Leydig cells to regulate steroidogenesis in mouse testis.
I. Abstract
Chinese abstract ------------------------------------------------------------------------------- i
English abstract ------------------------------------------------------------------------------- iii
II. Acknowledgements ----------------------------------------------------------------------- v
III. Table of Contents ------------------------------------------------------------------------- vi
IV. List of Figures ---------------------------------------------------------------------------- viii
V. Introduction --------------------------------------------------------------------------------- 1
VI. Materials and Methods
Chemicals -------------------------------------------------------------------------------------- 9
Animals ---------------------------------------------------------------------------------------- 10
Tissue Preparation ---------------------------------------------------------------------------- 11
Immunohistochemistry (IHC) --------------------------------------------------------------- 11
Primary Leydig Cell Isolation -------------------------------------------------------------- 13
Cell Culture and Sample Harvest ---------------------------------------------------------- 14
Radioimmunoassay (RIA) ------------------------------------------------------------------- 14
Protein Assay ---------------------------------------------------------------------------------- 15
Western Blotting Analysis ------------------------------------------------------------------- 16
Statistic Analysis ----------------------------------------------------------------------------- 17
VII. Results
Adult Leydig cells express FGF9, FGFR2, and FGFR3 ------------------------------- 18
The interstitial cells in developing mouse testis display elevating levels of
FGF9 immunoreactivity ---------------------------------------------------------------- 18
Localization of FGF receptors at the pnd 10 mouse testis -----------------------------19
Localization of FGF receptors at the pnd 20 mouse testis ---------------------------- 19
Localization of FGF receptors at the pnd 35 mouse testis ---------------------------- 20
Localization of FGF receptors at the pnd 65 mouse testis ---------------------------- 21
The dose effect of FGF9 on testosterone production in primary mouse
Leydig cells ----------------------------------------------------------------------------- 21
The effect of JNK inhibitor (SP600125) on FGF9-stimulated testosterone
production in primary mouse Leydig cells ----------------------------------------- 22
The effects of FGF9 on activation of Akt, p38, JNK and ERK1/2 in primary
mouse Leydig cells -------------------------------------------------------------------- 23
Temporal effects of FGF9 on activation of Akt, p38, JNK and ERK1/2 in
primary mouse Leydig cells ---------------------------------------------------------- 24
The activation of PI3K/Akt and p38 MAPKs signal pathway were
required for FGF9-stimulated testosterone production in primary
mouse Leydig cells -------------------------------------------------------------------- 25

VIII. Discussion ------------------------------------------------------------------------------- 46
IX. References ------------------------------------------------------------------------------- 53
Abidi P, Leers-Sucheta S, Cortez Y, Hau J, Azhar S (2008) Evidence that age-related changes in p38 MAP kinase contribute to the decreased steroid production by adrenocortical cells from old rats. Aging Cell 7:168~178

Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR (1995) PD98059 is specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 270:27489~27494

Ayres MD, Howard SC, Kuzio J, Lopez-Ferber M, Possee RD (1994) The complete DNA sequence of Autographa californica nuclear polyhedrosis virus. Virology 202:586-605

Benton L, Shan LX, Hardy MP (1995) Differentiation of adult Leydig cells. J Steroid Biochem Molec Biol 53:61~68

Bennett BL, Sasaki DT, Murray BW, O’Leary EC, Sakata ST, Xu W, Leisten JC, Motiwala A, Pierce S, Satoh Y, Bhagwat SS, Manning AM, Anderson D (2001) SP600125, an anthrapyrazolone inhibitor of Jun N-terminal kinase. PNAS 98:13681~13686

Browning JY, Heindel JJ, Grotjan HE Jr (1983) Primary culture of purified Leydig cells isolated from adult rat testes. Endocrinology 112:543~549

Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655~1657

Chaudhuri MM, Moscatelli D, Basilico C (1993) Involvement of the conserved acidic amino acid domain of FGF receptor 1 in ligand-receptor interaction. J Cell Physiol 157:209~216

Chen TM, Kuo PL, Hsu CH, Tsai SJ, Chen MJ, Lin CW, Sun HS (2007) Microsatellite in the 3’-untranslated region of human fibroblast growth factor 9 (FGF9) gene exhibits pleiotropic effect on modulating FGF9 protein expression. Human Mutation 11:1~3

Chi L, Itäranta P, Zhang S, Vainio S (2006) Sprouty2 is involved in male sex organogenesis by controlling fibroblast growth factor 9-induced mesonephric cell migration to the developing testis. Endocrinology 147:3777~3788

Clark BJ, Wells J, King SR, Stocco MD (1994) The purification, cloning, and expressioonf a novel luteinizing hormone-induced mitochondrial protein in MA-10 mouse Leydig tumor cells. J Biol Chem 269:28314~28322

Colón E, Svechnikov KV, Carlsson-Skwirut C, Bang P, Soder O (2005) Stimulation of steroidogenesis in immature rat Leydig cells evoked by interleukin-1α is potentiated by growth hormone and insulin-like growth factor. Endocrinology 146:221~230

Colvin JS, Feldman B, Nadeau JH, Goldfarb M, Ornitz DM (1999) Genomic organization and embryonic expression of the mouse fibroblast growth factor 9 gene. Dev Dyn 216:72~88

Colvin JS, Green RP, Schmahl J, Capel B, Ornitz DM (2001) Male-to-female sex reversal in mice lacking fibroblast growth factor 9 gene. Cell 104:875~889

Coughlin SR, Barr PJ, Cousens LS, Fretto LJ, Williams LT (1988) Acidic and basic fibroblast growth factors stimulate tyrosine kinase activity in vivo. J Biol Chem 263:988~993

Dailey L, Ambrosetti D, Mansukhani A, Basilico C (2005) Mechanisms underlying differential responses to FGF signaling. Cytokin Growth Factor Rev 16:233~247

Davis R (2001) Signal transduction by the JNK group of MAP kinases. Cell 103:239~252

DiNapoli L, Batchvarov J, Capel B (2006) FGF9 promotes survival of germ cells in the fetal testis. Development 133:1519~1527

Drummond AE, Tellach M, Dyson M, Findlay JK (2007) FGF9:a local regulator of ovarian function. Endocrinology 148:3711~3721

Duan DSR, Werner S, Williams LT (1992) A naturally occurring secreted form of fibroblast growth factor (FGF) receptor 1 binds basic FGF in preference over acidic FGF. J Biol Chem 267:16076~16080

Eswarakumar VP, Lax I, Schlessinger J (2005) Cellular signaling by fibroblast growth factor receptors. Cytokin Growth Factor Rev 16:139~149

Giri D, Ropiquet F, Ittmann M (1999) FGF9 is an autocrine and paracrine prostatic growth factor expressed by prostatic stromal cells. J Cell Phy 180:53~60

Grafodatskaya D, Rens W, Wallis MC, TRifonov V, O’Brien PCM, Clarke O, Graves JAM, Ferguson-Smith MA (2007) Search fro the sec-determining switch in monotermes: mapping WT1, SF1, LHX1, LHX2, FGF9, WNT4, RSPO1 and GATA4 in platypus. Chromosome Research 15:777~785

Henderson GD, Chesworth JM (1977) The choice of charcoal for use in steroid radioimmunoassay. Lab Pract 26:866~867

Haider SG (2004) Cell biology of Leydig cells in the testis. Int Rev Cytol 233:181~241

Hardy MP, Zirkin BR, Ewing LL (1989) Kinetic studies on the development of the adult population of Leydig cells in testes of the pubertal rat. Endocrinology 124:762~770

Huang BM, Stocco DM, Hutson JC, Norman RL (1997) The cellular mechanisms of corticotropin-releasing hormone (CRH) stimulated steroidogenesis in mouse Leydig cells are similar to those of LH. Journal of Andrology 18: 528~534

Irvine RF (2002) Nuclear lipid signaling. Sci STKE 150:1~16

Itoh N (2007) The Fgf families in humans, mice, and Zebrafish:their evolutional processes and roles in development, metabolism, and disease. Biol Pharm Bull 30:1819~1825

Johnson DE, Williams LT (1993) Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res 60:1~41

Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2:1911~1912

Kan M, Wang F, Xu J, Crabb JW, Hou J, McKeehan WL (1993) An essential heparin-binding domain in the fibroblast growth factor receptor kinase. Science 259:1918~1921

Kanda T, Iwasaki T, Nakamura S, Ueki A, Kurokawa T, Ikeda K, Mizusawa H (1999) FGF9 is an autocrine/paracrine neurotrophic substance for spinal motoneurons. Int J Devl Neuroscience 17:191~200

Kanda T, Iwasaki T, Nakamura S, Kurokawa T, Ikeda K, Muzusawa H (2000) Self-secretion of fibroblast growth factor-9 supports basal forebrain cholinergic neurons in an autocrine/paracrine manner. Brain Res 876:22~30

Kim Y, Kobayashi A, Sekido R, DiNapoli L, Brennan J, Chaboissier MC, Poulat F, Behringer RR, Lovell-Badge R, Capel B (2006) Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol 4:1000~1009

Kim Y, Bingham N, Sekido R, Parker KL, Lovell-Badge R, Capel B (2007) Fibroblast growth factor receptor 2 regulates proliferation and Sertoli differentiation during male sex determination. PNAS 104:16558~16563

Lamothe B, Yamada M, Schaeper U, Birchmeier W, Lax I, Schlessinger J (2004) The docking protein Gab1 is an essential component of an indirect mechanism for fibroblast growth factor stimulation of the phosphatidylinositol 3-kinase/Akt antiapoptotic pathway. Mol Cell Biol 24:5657~5666

Laslett AL, McFarlane JR, Risbridger GP (1997) Developmental response by Leydig cells to acidic and basic fibroblast growth factor. J Steroid Biochem Melec Biol 60:171~179

Leydig F (1850) Zur Anatomie der männlichen Geschlechtsorgane und Analdrüsen der Säugrthiere. Z wiss Zool 2:1~57

Lin YM, Tsai CC, Chung CL, Chen PR, Sun HS, Tsai SJ, Huang BM (2009) Fibroblast growth factor 9 stimulates steroidogenesis in postnatal Leydig cells. Int J Androl 32:1~9

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem, 193:265~275

Hammond GL (2002) Access of reproductive steroids to target tissues. Obstet Gynecol Clin North Am 29:411~23

Martin JH, Mohit AA, Miller CA (1996) Developmental expression in the mouse nervous system of the p493F12 SAP kinase. Brain Res Mol Brain Res 35:47~57

Mattei MG, Penault-Llorca F, Voulier F, Bimbaum D (1995) The human FGF9 gene maps to chromosomal region 13q11-q12. Genomics 29:811~812

Mattei MG, Moerlooze LD, Lovec H, Coulier F, Birnbaum D, Dickson C (1997) Mouse Fgf9 (fibroblast growth factor 9) is localized on Chromosome 14. Mammalian Genome 8:617~628

Miller RT, Kubier P (1997) Blocking of endogenous avidin-binding activity in immunohistochemistry. Appl Immunohistochem 5:63~66

Miyamoto M, Naruo KI, Seko C, Matusumto S, Kondo T, Kurokawa T (1993) Molecular cloning of a novel cytokine cDNA encoding the ninth member of the fibroblast growth factor family, which has a unigue secretion property. Mol Cell Biol 13:4251~4259

Mohammadi M, Honegger AM, Rotin D, Fischer R, Bellot F, Li W, Dionne CA, Jaye M, Rubinstein M, Schlessinger J (1991) A tyrosine-phosphorylated carboxy-terminal peptide of the fibroblast growth factor receptor (Flg) is a binding site for the SH2 domain of phospholipase C-gamma 1. Mol Cell Biol 11:5068~5078

Mohammadi M, Olsen SK, Ibrahimi OA (2005) Structural basis for fibroblast growth factor receptor activation. Cytokin Growth Factor Rev 16:107~137

Naruo KI, Seko C, Kuroshima KI, Matsutani E, Sasada R, Kondo T, Kurokawa T (1993) Novelsecretory heparin-binding factors from human glioma cells (glia-activating factors) involved in glial cell growth. J Cell Biol 288:2857~2884

Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthun FC, Gao G, Goldfarb M (1996) Receptor specificity of the fibroblast growth factor family. J Biol Chem 271:15292~15297

Ornitz DM (2000) FGFs, heparin sulfate and FGFRs:complex interactions essential for development. BioEssays 22:108~112

Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome Biol 2: reviews3005.1~3005.12

Payne AH, Kelch RP, Murono EP, Kerlan JT (1977) Hypothalamic, pituitary and testicular function during sexual maturation of the male rat. J Endocrinol 72:17~26

Pearson G, Robinson F, Beers GT, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogenactivated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153~183

Plotnikov AN, Hubbard SR, Schlessinger J, Mohammadi M (2000) Crystal structures of two FGF-FGFR complex reveal the determinants of ligand-receptor specificity. Cell 101:413~424

Ramy RE, Verot A, Mazaud S, Odet F, Magre S, Magueresse-Battistoni BL (2005) Fibroblast growth factor (FGF) 2 and FGF9 mediate mesenchymal-epithelial interactions of peritubular and Sertoli cells in the rat testis. J Endocrinology 187:135~147

Raman M, Chen W, Cobb MH (2007) Differential regulation and properties of MAPKs. Oncogene 26:3100~3112

Revest JM, Denoerloose L, Dickson C (2000) Fibroblast growth factor 9 secretion is mediated by a non-cleaved amino-terminal signal sequence. J Cell Biol 275:8083~8090

Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol Biol Rev 68:320~344

Ryan PJ, Paterno GD, Gillespie LL (1998) Identification of phosphorylated proteins associated with the fibroblast growth factor receptor type I during early Xenopus development. Biochem Biophys Res Commun 244:763~767

Saez JM (1994) Leydig cells:endocrine, paracrine, and autocrine regulation. Endocrine Reviews 15:574~626

Santos-Ocampo S, Colvin JS, Chellaiah A, Ornitz DM (1996) Expression and biological activity of mouse fibroblast growth factor 9. J Cell Biol 271:1726~1731

Schlessinger J, Lax I, Lemmon M (1995) Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors? Cell 83:357~360

Schmahl J, Kim Y, Colvin JS, Ornitz DM, Capel B (2004) Fgf9 induces proliferation and nuclear localization of FGFR2 in Sertoli precursors during male sex determination. Development 131:3627~3636

Shi E, Kan M, Xu J, Wang F, Hou J, McKeehan WL (1993) Control of fibroblast growth factor receptor kinase signal transduction by heterodimerization of combinatorial splice variants. Mol Cell Biol 13:3907~3918

Shibaski F, Homma Y, Takenawa T (1991) Monomer and heterodimer forms of phosphatidylinositol-3-kinase. J Biol Chem 266:8108~8114

Simpson ER, Jefcoate CR, Brownie AC, Boyd GS (1972a) The effect of ether anaesthesia stress on cholesterol-side-chain cleavage and cytochrome P450 in rat-adrenal mitochondria. Eur J Biochem 28:442~450

Simpson ER, Trzeciak WH, McCarthy JL, Jefcoate CR, Boyd GS (1972b) Factors affecting cholesterol esterase and cholesterol side-chain-cleavage activities in rat adrenal. Biochem J 29:10P~11P

Sone J, Yoshimasu H, Kojima M (1976) Relationships between conformation of antigen and specificity of antibody in radioimmunoassay for steroid hormone. II. Synthesis of 6-hydrosytestosterone 6-hemisuccinate-bovine serum albumin conjugates. Yakugaku Zasshi 96:199~202

Song J, Slack JM (1996) XFGF9:a new fibroblast growth from Xenopus embryos. Dev Dyn 206:427~436

Sordoillet C, Savona C, Chauvin MA, de Peretti E, Feige JJ, Morera AM, Benahmed M (1992) Basic fibroblast growth factor enhances testosterone secretion in cultured porcine Leydig cells: site(s) of action. Mol Cell Endocrinol 89:163~171

Sutherland D, Samakovlis C, Krasnow MA (1996) Branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell 87:1091~1101

Svechnikov K, Stocco DM, Söder O (2003) Interleukin-1α stimulates steroidogenic acute regulatory protein expression via p38 MAP kinase in immature rat Leydig cells. J Mol Endocrinol 30:59~67

Svechnikov K, Petersen C, Sultana T, Wahlgren A, Zetterström C, Colón E, Bornestaf C, Söder O (2004) The paracrine role played by interleukin-1 alpha in the testis. Curr Drug Targets Immune Endocr Metabol Disord 4:67~74

Tagashira S, Ozaki K, Ohta M, Itoh N (1995) Localization of fibroblast growth factor-9 mRNA in the rat brain. Mol Brain Res 30:233~241

Tena-Sempere M, Zhang FP, Huhtaniemi I (1994) Persistent expression of a truncated form of the luteinizing hormone receptor messenger ribonucleic acid in the rat testis after selective Leydig cell destruction by ethylendimethane sulfonate. Endocrinology 135:1018~1024

Wang F, Kan M, Xu J, Yan G, McKeehan WL (1995a) Ligand-specific structural domains in the fibroblast growth factor receptor. J Biol Chem 270:10222~10230

Wang F, Kan M, Yan G, Xu J, McKeehan WL (1995b) Alternately spliced NH2-terminal immunoglobulin-like Loop I in the ectodomain of the fibroblast growth factor (FGF) receptor 1 lowers affinity for both heparin and FGF-1. J Biol Chem 270:10231~10235

Willerton L, Smith RA, Russell D, Mackay S (2004) Effects of FGF9 on embryomic Sertoli cell proliferation and testicular cord formation in the mouse. Int J Dev Biol 48:637~643

Wood GS, Warnke R (1981) Suppression of endogenous avidin-binding activity in tissues and its relevance to biotin-avidin detection systems. J Histochem Cytochem 29:1196~1204

Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinase on apoptosis. Science 270:1326~1331

Xie YB, Wang H, Segaloff DL (1990) Extracellular domain of lutropin/choriogonadotropin receptor expressed in transfected cells binds choriogonadotropin with high affinity. J Biol Chem 265:21411~21414

Yu FQ, Han CS, Yang W, Jin X, Hu ZY, Liu YX (2005) Activation of the p38 MAPK pathway by follicle-stimulation hormone regulates steroidogensis in granulose cells differentially. J Endocrinol 186:85~96
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊