跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 00:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:魯少曾
研究生(外文):Shao-Sheng Lu
論文名稱:心房顫動接受電燒及藥物治療結果之分析與預測
論文名稱(外文):Analysis and prediction of therapeutic effects by catheter ablation and medication in atrial fibrillation
指導教授:梁勝富梁勝富引用關係
指導教授(外文):Sheng-Fu Liang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資訊工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:58
中文關鍵詞:心房顫動活化圖預測單一輸出單一輸入自動回歸模型含狀態空間模型
外文關鍵詞:predictionstate space modelARX modelatrial fibrillationactivation mappingentropy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
心房顫動是一個最常見的心律失常的疾病,它是由一些心房內不規則電子游離而產生的。全世界約0.4%的人口有心房顫動的疾病,這樣使得在住院治療方面造成很高的社會成本。針對心房顫動的疾病,有多種的治療方式。然而治療方式的選擇通常是利用臨床上的特徵。如果我們能提供分析的機制以及預測經過治療後的病況,使能提供給醫生一些額外的資訊去診斷需要利用哪一種治療方式。在我們的研究中利用到時間-空間以及非線性的分析來比較治療前後的差異以及個體之間的差異。我們發現經由藥物治療所減少的小波數目跟熵有著正相關的特性。此外我們利用到數學的方法建立藥物治療的模型,利用這個模型推測藥物治療後的特性。針對電燒方面我們利用一些時間空間上的模擬去預測電燒過後的特性。不管在藥物治療或者電燒方面我們均能預測出相似的結果。
Atrail fibrillation (AF) is the most common cardiac arrhythmias. In AF, the normal electrical impulses that are generated by the sinoatrial node are overwhelmed by disorganized electrical impulses. The prevalence of AF is 0.4% of the general population. Management of AF carries high social cost related to hospitalization. There are many kinds of therapy developed to terminate the AF. However the choice of the therapy is based on the clinical guideline. If we can understand the mechanism and forecast the condition after the treatment, it will help the doctor assess which treatment will be efficient. Since the animal model can mimick the clinical situation of human, our research was based on the swine model. In our research, we proposed spatial-temporal and non-linear methods to analyze the difference between before and after the treatment and the different between the subjects with successfully terminated AF and without terminated AF. The decrease of wavelet number after the treatment is positive correlation with the entropy. A mathematical method was proposed to predict the condition after medication. In the RF ablation, we proposed a spatial-temporal method to simulate the condition after the treatment. In both of the treatment, our estimated result is similar to the original condition after the treatment.
Chapter 1. Introduction 1
1.1. Research background 1
1.1.1. Atrial fibrillation 1
1.1.2. Electrocardiogram 2
1.1.3. Reentrant mechanisms of atrial fibrillation 3
1.1.4. Wavelet number, wavelength 4
1.1.5. Treatment 5
1.2. Related work 8
1.3. Research motivation 10
1.4. Research objective 11
1.5. Summary of the thesis 12
Chapter 2. Materials and methods 13
2.1. Data acquisition 15
2.2. Spatial-temporal analysis 17
2.2.1. Activation mapping and vector mapping 17
2.2.2. Wavelet and reentry 19
2.2.3. Activation mapping patterns 21
2.3. Approximate entropy 23
2.4. Prediction 25
2.4.1. State space model 25
2.4.2. ARX model 25
2.4.3. Ablation simulation 27
2.5. Correlation analysis 28
Chapter 3. Experimental results 29
3.1. Wavelet number and AA interval 29
3.2. Analysis and prediction of therapeutic effects by propafenone 33
3.2.1. Characteristic of propafenone 33
3.2.2. Entropy 35
3.2.3. Prediction 37
3.3. Analysis and prediction of therapeutic effects by sotalol 39
3.3.1. Characteristic of sotalol 39
3.3.2. Entropy 41
3.3.3. Prediction 44
3.4. Radiofrequency ablation 46
3.4.1. Characteristic of radiofrequency ablation 46
3.4.2. Prediction 48
Chapter 4. Discussion 49
4.1. Spatial-temporal pattern 49
4.2. Entropy 51
4.3. Prediction 52
Chapter 5. Conclusion 54
Reference 55
Allessie, M. A., Bonke, F. I., and Schopman, F. J., “Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle,” Circulation Research, 1997;41:9–18.
Amerini, S., Bernabei, R., Carbonin, P., Cerbai, E., Mugelli, A., and Pahor, M., “Electrophysiological mechanism for the antiarrhythmic action of propafenone: a comparison with mexiletine,” British Journal of Pharmacology, 1988;95:1039-1046.
Beaumont, J., Davidenko, N., Davidenko, J. M., and Jalife, J., “Spiral Waves in Two-Dimensional Models of Ventricular Muscle: Formation of a Stationary Core,” Biophysical Journal,1998;75:1-14.
Costa, M., Goldberger, A. L., and Peng, C.-K., “Mutiscale entropy analysis of complex physiologic time series,” Physical Review Letters, 2002;89(6):068102.
Dennis, L. D., Mark, L. G., Peter T. H., David, J. M., John, and D. B., ”Managing chronic AF: A Markov decision analysis comparing warfarin, quinidine, and low-dose amiodarone,” Annals of internal medicine, 1994;120:449–457.
Faes, I., Nollo, G., Kirchner, M., Olivetti, E., Gaita, F., Riccardi, R., Antolini, R., “Principal component analysis and cluster analysis for measuring the local organisation of human AF,” Medical & Biological Engineering & Computing,2001;39:656-663.
Furberg,C. D., Psaty, B. M., Manolio, T. A.,Gardin, J. M., Smith, V. E., and Rautahariju,P. M., “Prevalence of AF in elderly subjects (the cardiovascular health study),” The American Journal of Cardiology, 1994;74:236–241.
Fuster, V., Rydén, L. E., Cannom, D. S., Crijns, H. J., Curtis, A. B., Ellenbogen, K. A., Halperin, J. L., Le Heuzey, J.-Y., Kay, G. N., Lowe, J. E., Olsson, S. B., Prystowsky, E. N., Tamargo, J. L., Wann, S., Smith, S. C., Jacobs, A. K., Adams, C. D., Anderson, J. L., Antman, E. M., Hunt, S. A., Nishimura, R., Ornato, J. P., Page, R. L., Riegel, B., Priori, S. G., Blanc, J.-J., Budaj, A., Camm, A. J., Dean, V., Deckers, J. W., Despres, C., Dickstein, K., Lekakis, J., McGregor, K., Metra, M., Morais, J., Osterspey, A., and Zamorano, J.L., “ACC/AHA/ESC 2006 Guidelines for the Management of Patients With AF,” Journal of the American College of Cardiology, 2006;4(48):149-246.
Garfinkel, A., Chen, P.-S., Walter, D. O., Karagueuzian, H. S., Kogan, B., Evans, S. J., Karpoukhin, M., Hwang, C., Uchida, T., Gotch, M., Nwasokwa, O., Sager, P., Weiss, J. N.,“Quasiperiodicity and Chaos in Cardiac Fibrillation,” The Journal of Clinical Investigation, 1997;99(2):305-314.
Glass, L., Guevara, M. R., and Shrier, A., “Bifurcation and chaos in periodically simulated cardiac oscillator,” Physica 7D, 1983;89-101.
Graux, P., Carlioz, R., Rivat, P., Bera, J., Guyomar, Y., Dutoit, A., “Wavelength and atrial vulnerability: an endocavitary approach in humans,” Pacing and Clinical Electrophysiology, 1998;21:202-208.
Hart, R. G., and Halperin, J. L., “AF and stroke: concepts and controversies,” Stroke, 2001;32:803-808.
Hoekstra, B. P., Diks, C. G., Allessie, M. A., DeGoede, J., Non-linear analysis of epicardial atrial electrograms of electrically induced atrial brillation in man, J. Cardiovasc. Electrophysiol. 1995;6: 419–440.
Kannel, W.B., Wolfs, P. A., Benjamin, E. J., and Levy, D., “Prevalence, incidence, prognosis, and predisposing conditions for AF: population-based estimates,” The American Journal of Cardiology, 1998;82:2N–9N.
Kenneth, M. S., Jeff, W., Neal, L., and Bruce, B. L., “Ventricular response in atrial brillation: random or deterministic?,” Am. J. Physiol., 1999;277(46):H452-458.
Khairy, P., and Nattel, S., “New insights into the mechanisms and management of AF,” Canadian Medical Association Journal, 2002; 167(9):1012-20.
Kim, K.-B., Rodefeld, M. D., Schuessler, R. B., Cox, J. L., and Boineau, J. P., “Relationship Between Local AF Interval and Refractory Period in the Isolated Canine Atrium,” Circulation, 1996;94:2961-2967.
Kneller, J., Zou, R., Vigmond, E. J., Wang, Z., Leon, L. J, and Nattel, S.,” AF in a computer model of a 2-dimensional sheet of canine atrial cells with realistic ionic properties,” Circ Res, 2002;90: 73e–87e.
Konings, K. T., Kirchhof, C. J., Smeets, J. R., Wellens, H. J., Penn, O. C., and Allessie, M. A., “High-density mapping of electrically induced AF in humans,” Circulation, 1994;89:1665-1680.
Lai, L.-P., Lin, J.-L., Lien, W.-P., Tseng, Y.-Z., and Huang, S. K. S., “Intravenous Sotalol Decreases Transthoracic Cardioversion Energy Requirement for Chronic AF in Humans: Assessment of the Electrophysiological Effects by Biatrial Basket Electrodes,” Journal of Amercan College of Cardiology, 2000;35:1434-1441.
Lewis, T., and Stroud, F. H.W. D.,” Observations upon flutter and fibrillation. II: The nature of auricular flutter,” Heart, 1920;7:191–245.
Lickfett, L. M., Calkins, H. G., and Berger, R. D., “Radiofrequency Ablation for AF,” Current Treatment Options in Cardiovascular Medicine 2002;4:295–306.
Lin,J. L., Lai, L. P., Lin, C. S., Du, C. C., Wu, T. J., Chen, S. P., Lee, W. C., Yang, P. C., Tseng, Y. Z., Lien, W. P., and Huang, S. K. S., “Electrophysiological mapping and histological examinations of the swine atrium with sustained (>24 h) AF: a suitable animal model for studying human AF,” Cardiology, 2003;99:78-84.
Ljung, L., System identification, 2nd edition. PTR: Prentice-Hall, 1999.
Luo, C.-H. and Rudy Y., “A Model of the Ventricular Cardiac Action Potential,” Circulation Research, 1991;68:1501-1526.
Mandapati, R., Skanes, A., Chen, J., Berenfeld, O., and Jalife, J., “Stable microreentrant sources as a mechanism of AF in the isolated sheep heart,” Circulation, 2000;101(2):194–199.
Mase, M., Faes, L., Antolini, R., Scaglione, M., Ravelli, F., “Quantication ofsynchronization during atrial brillation by Shannon entropy: validationin patients and computer model of atrial arrhythmias, “ Physiol. Meas., 2005;26 911–923.
Moe, G. K., “On the multiple wavelet hypothesis of atrial brillation,” Arch Int Pharmacodyn Ther, 1962;140:183–8.
Moe, G. K., Rheinboldt, W. C., and Abildskov, J. A., “A computer model of AF,” The American Journal of Cardiology, 1964;67:200-220.
Narayan, S. M., and Bhargava, V., Fellow, IEEE “Temporal and Spatial Phase Analyses of the Electrocardiogram Stratify Intra-Atrial and Intra-Ventricular Organization,” IEEE Transaction On Biomedical Engineering, 2004;10(51):1749-1764.
Nattel, S., “New ideas about AF 50 years on,” Nature, 2000;415:219-226.
Nilsson, F., Stridh, M., Bollmann, A., So ̈rnmo, L., “Predicting spontaneous termination of atrial brillation using the surface ECG,” Medical Engineering Physics, 2006;28:802-808.
Pincus, S. M., “Approximate entropy as a measure of system complexity,” Proceedings of the National Academy of Science of the United State of America, 1994;88: 2291-2301.
Prystowsky, E. N., “Management of AF: therapeutic options and clinical decisions,” The American Journal of Cardiology, 2000;85(10A):3D-11D.
Richman, J.S., Moorman, J. R., “Physiologic time series analysis using approximate entropy and sample entropy,” Am J Physiol Heart Circ 2000;278:H2039-2049.
Rodgers, J. L., Nicewander, W. A., “Thirteen Ways to Look at the Correlation Coefficient,” The American Statistician, 1988:42(1):59-66.
Skanes, A.C., Mandapati, R., Berenfeld, O., Davidenko, J.M., and Jalife, J., “Spatio-temporal periodicity during AF in the isolated sheep heart,” Circulation, 1998;98:1236–1248.
Stewart, S., Hart, C. L., Hole, D. L., and McMurray, J. J., “Population prevalence, incidence, and predictors of AF in the Renfrew/Paisley study,” Heart, 2001;86:516–521.
Sugihara, G., May, R. M., “Non-linear forecasting as a way of distinguishing chaos from measurement error in time series,” Nature 344 (1990) 734–741.
Sun, R., Wang, Y., “Predicting termination of atrial brillation based on the structure and quantication of the recurrence plot,” Medical Engineering Physics, 2008;30:1105-1111.
Tse, H.-F..,, and Lau, C. K., “Electrophysiologic Actions of dl-Sotalol in Patients With Persistent AF,” Journal of the American College of Cardiology, 2002;40(12):2150:2155.
Wang, J., Bourne, G.W., and Wang, Z., “Comparative mechanisms of antiarrhythmic drug action in experimental atrial brillation: importance of use-dependent effects on refractoriness,” Circulation, 1993;88:1030–44.
Weiss, J. N., Garfonkel, A., Spano, M. L., Ditto, W. L.,“Chaos and Chaos Control in Biology,” The Journal of Clinical Investigation, 1994; 93:1355-1360.
Wijffels, M. C., Kirchhof, C. J., Dorland, R., and Allessie, M. A., “AF begets AF. A study in awake chronically instrumented goats,” Circulation, 1995; 92:1954–1968.
Z ̌ohar, P., Kovac ̌ic, M., Brezocnik, M., Podbregar, Matej, “Prediction of maintenance of sinus rhythm after electrical cardioversion of atrial brillation by non-deterministic modeling,” Europace,2005;7:500-507.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top