(3.237.178.91) 您好!臺灣時間:2021/03/07 02:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉信富
研究生(外文):Hsin-Fu Yeh
論文名稱:流域地下水資源調查分析與案例研究
論文名稱(外文):Analysis of Groundwater Resources in Mountainous Basin – Case Study
指導教授:李振誥李振誥引用關係
指導教授(外文):Cheng-Haw Lee
學位類別:博士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:101
中文關鍵詞:地下水潛勢能區地理資訊系統基流模式土壤水分收支法地下水補注穩定同位素
外文關鍵詞:geographical information systembase-flow modelgroundwater potential zonesoil moisture budget methodstable isotopesgroundwater recharge
相關次數:
  • 被引用被引用:4
  • 點閱點閱:361
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:104
  • 收藏至我的研究室書目清單書目收藏:1
本研究主要目的為地下水資源調查與分析,以流域作為案例研究,本論文主要分為三大主軸,分別為 (1)流域地下水補注量推估;(2)流域地下水補注潛勢能區劃分;(3)流域地下水補注特性評估。首先在流域地下水補注量推估方面,應用兩種水平衡方法推估清水溪流域地下水補注量,第一種方法為土壤水分收支法,評估常年降雨產生之入滲、逕流、蒸發散及地下水補注,其中土壤含水量為隨時間變化的。第二種方法為使用河川總流量進行基流分離之基流推估模式,其中之地下水蒸發散量是假設忽略的。本研究提出基流模式相對於土壤水分收支法而言,它不需要複雜的水文地質模型及詳盡的地質特徵,即可對流域地下水補注量有正確的推估。
第二部份為流域地下水補注潛勢能區劃分,針對不同地下水補注影響因素進行知本溪流域地下水補注潛能區劃分。其中,影響因子包括岩性、土地利用/覆蓋、線型構造、河系以及坡度等五項。根據航照圖、地質圖幅、國土利用資料庫以及現地探勘驗證,決定地下水補注影響因子之性質與特徵,並應用地理資訊系統之空間整合功能性進行地下水補注潛能區之劃分。
最後部份為主要利用穩定氫氧同位素組成評估知本溪流域地下水補注來源及雨水對地下水補注的季節性差異,主要收集雨水、河水及地下水樣本進行穩定氫氧同位素組成分析,其以乾季及溼季來探討。並利用質量平衡概念比較雨水與地下水的氘過剩值來評估雨水對地下水補注的季節性差異,結果顯示該流域地下水76%來自濕季降雨,24%來自乾季降雨,可知研究區域地下水補注有顯著的季節性差異。另外,補注水源所佔分率中,流域內之地下水補注量其山區河水佔79%,平原雨水佔21%。
The principal objectives of this dissertation are to investigate the groundwater resources in mountainous basin through a set of detailed case studies. This dissertation is mainly divided into three major parts including: (1) groundwater recharge estimation; (2) groundwater recharge potential zone mapping; and (3) groundwater recharge characteristics evaluation. The first part is to apply a water balance concept with two methods to estimate the groundwater recharge in the Ching-Shui Creek basin. A soil moisture budget method is established to estimate the infiltration, runoff, evapotranspiration, and groundwater recharge in the basin, where the moisture content of the soil is tracked through time. Both soil-water properties of the unsaturated zone and climatic conditions must be fully considered. The base-flow model uses the base-flow separation from the total streamflow discharge to obtain a measure of groundwater recharge, where groundwater evapotranspiration is negligible. In contrast to the soil moisture budget method, base-flow estimation does not require complex hydro-geologic modeling and detailed knowledge of soil characteristics.
The second part is to assess the potential zone of groundwater recharge. The Chih-Pen Creek basin in eastern Taiwan is examined in this study to assess its groundwater resources potential. Remote sensing and the geographical information system (GIS) are used to integrate five contributing factors: lithology, land cover/land use, lineaments, drainage, and slope. The weights of factors contributing to the groundwater recharge are derived using aerial photos, geological maps, a land use database, and field verification.
The final part is to use the stable isotopes of oxygen and hydrogen to estimate the sources of groundwater and seasonal contributions of precipitation to groundwater recharge in Chih-Pen Creek basin. Precipitation, river water, and groundwater samples are collected for oxygen and hydrogen isotopic analyses between January and December, 2007. Sampling is carried out during both wet and dry periods. Using a mass-balance equation, a comparison of deuterium excess or d-values of precipitation and groundwater indicates the groundwater consist of 76% wet season precipitation and 24% dry season precipitation, representing a distinct seasonal variation of groundwater recharge in study area. About 79% of the groundwater is recharged from the river water of the mountain watershed and 21% is from the rain that falls on the basin.
ABSTRACT
摘要
誌謝
TABLE OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
NOMENCLATURE
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Outline of dissertation 8
Chapter 2 Estimation of Groundwater Recharge 12
2.1 Introduction 12
2.2 Methodology 14
2.2.1 Soil moisture budget method 14
2.2.2 Base-flow model 20
2.2.3 Stable-base-flow analysis 24
2.3 Study area 26
2.3.1 Field data 27
2.4 Results and discussions 30
2.4.1 Soil moisture budget Analysis 30
2.4.2 Base-flow analysis 33
2.5 Summary 38
Chapter 3 Assessment of the Groundwater Recharge Potential Zone 39
3.1 Introduction 39
3.2 Methodology 41
3.2.1 Study approach 41
3.2.2 The Infrastructure of the groundwater recharge potential model 43
3.3 Establishment of groundwater recharge potential-related factors 44
3.3.1 Lithology 44
3.3.2 Land use/cover 44
3.3.3 Lineaments 45
3.3.4 Drainage 46
3.3.5 Slope 47
3.4 Interrelationships between the factors of the groundwater recharge potential 47
3.5 Study area 49
3.5.1 Geographical position and meteorological hydrology 49
3.5.2 Topography and geology 50
3.6 Groundwater recharge potential factor establishment and spatial analysis 53
3.6.1 Factor establishment 53
3.6.2 Spatial analysis 56
3.6.3 Demarcation of the groundwater recharge zone 60
3.7 Summary 62
Chapter 4 Evaluation of Groundwater Recharge Characteristics 63
4.1 Introduction 63
4.2 Theory of environmental isotopes 63
4.3 Sampling and analytical method 70
4.4 Results and discussion 71
4.4.1 Isotopic compositions of precipitation 71
4.4.2 Mass-balance of isotopic compositions of groundwater 75
4.4.3 Isotopic compositions of river water 79
4.5 Summary 81
Chapter 5 Summary and Conclusion 82

References
個人簡歷
1.Allen RG, Pereira LS, Rase D, Smith M (1998) Crop evapotranspiration Guideldelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, FAO, Rome
2.Arnold JG, Allen PM (1999) Automated methods for estimating baseflow and ground water recharge from streamflow records. Journal of the American Water Resources Association 35: 411-424
3.Asano Y, Uchida T, Ohte N (2002) Residence times and flow paths of water in steep unchannelled catchments, Tanakami, Japan. Journal of Hydrology 261: 173-192
4.Avery WJ, Donovan J, Ketchum N (1999) Recharge estimation by stage-discharge interpretation from cross-correlated well measurements. Ground Water 37: 332-337
5.Barnes BS (1939) The structure of discharge recession curves. Transactions of American Geophysical Union 20: 721-725
6.Bierwirth PN, Welsh WD (2000) Delineation of recharge beds in the Great Artesian Basin using airborne gamma-radiometrics and satellite remote sensing. Report for the National Landcare Program, Bureau of Rural Sciences, Canberra, Australia, 33p
7.Blasch KW, Bryson JR (2007) Distinguishing sources of ground water recharge by using δ2H and δ18O. Ground Water 45: 294-308
8.Brooks RJ, Corey AT (1964) Hydraulic properties of porous media. Hydrology Papers 3 Colorado State University, Fort Collins
9.Central Weather Bureau (1992-2001) Yearbook of climate. Central Weather Bureau, Taiwan
10.Chang JC (1996) Natural hazards in Taiwan. GeoJournal 38: 251-257
11.Chen JF, Lee CH, Yeh TCJ, Yu JL (2005) A water budget model for the Yun-Lin plain, Taiwan. Water Resources Management 19: 483-504
12.Chen JF, Lee CH, Yu JL (2003) An Analytical Solution on Water Budget Model in Unsaturated Zone. Journal of the Chinese Institute of Engineers 26: 321-332
13.Chen WP, Lee CH (2003) Estimating Ground-Water Recharge from Streamflow Records. Environmental Geology 44: 257-265
14.Cherkauer DS, Ansari SA (2005) Estimating ground water recharge from topography, hydrogeology, and land cover. Ground Water 43: 102-112
15.Chiang WH, Kinzelbach W (1998) Processing Modflow for windows (version 5.06), Hamburg Germany 1998
16.Chowdary VM, Ramakrishnan D, Srivastava YK, Chandran V, Jeyaram A (2008) Integrated Water Resource Development Plan for Sustainable Management of Mayurakshi Watershed, India using Remote Sensing and GIS. Water Resources Management DOI 10.1007/s11269-008-9342-9 (in press)
17.Clark ID, Fritz P (1997) Environmental Isotopes in Hydrology. Lewis Publishers, New York
18.Coleman ML, Shepherd TJ, Durham JJ, Rouse JE, Moore GR (1982) Reduction of water with zinc for hydrogen isotope analysis. Analytical Chemistry 54: 993-995
19.Craig H (1961) Isotopic variations in meteoric waters. Science 133: 1702-1703
20.Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16: 436-468
21.Darling WG, Armannsson H (1989) Stable isotopic aspects of fluid flow in the Krafla, Namafijall and Theistareykir geothermal systems of northeast Iceland. Chemical Geology 76: 197-213
22.Delin G, Healy RM, Healy, Landon, Bohlke J (2000) Effects of topography and soil properties in recharge at two sits in an agricultural filed. Journal of the American Water Resources Association 36: 1401-1416
23.Deshpande RD, Bhattacharya SK, Jani RA, Gupta SK (2003) Distribution of oxygen and hydrogen isotopes in shallow groundwaters from Southern India: influence of a dual monsoon system. Journal of Hydrology 271: 226-239
24.Dinesh Kumar PK, Gopinath G, Seralathan P (2007) Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest coast of India. International Journal of Remote Sensing 28: 5583–5601
25.Duplessy J, Labeyrie J, Lalou C, Nguyen HV (1980) Continental climatic variations between 130,000 and 90,000 years BP. Nature 226: 631-633
26.Edet AE, Okereke CS, Teme SC, Esu EO (1998) Application of remote sensing data to groundwater exploration: a case study of the Cross River State, southeastern Nigeria. Hydrogeology Journal 6: 394-404
27.El-Baz F, Himida I (1995) Groundwater potential of the Sinai Peninsula. Egypt, Project Summery, AID, Cairo
28.Epstein S, Mayeda T (1953) Variation of 18O content of waters from natural sources. Geochimica et Cosmochimica Acta 4: 213-224
29.Fillion E, Noyer ML (1996) Flow modeling in a dual porous domain with automatic mesh generation and parameter calibration: application to the Aespoe site. Journal of Hydrology 180: 1-19
30.Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Inc., Englewood Cliffs, N.J. USA
31.Gammons CH, Poulson SR, Pellicori DA, Reed PJ, Roesler AJ, Petrescu EM (2006) The hydrogen and oxygen isotopic composition of precipitation, evaporated mine water, and river water in Montana, USA. Journal of Hydrology 328: 319-330
32.Gat JR (1980) The isotopes of hydrogen and oxygen in precipitation. In: Handbook of Environmental Isotope Geochemistry (Fritz P, Fontes Jh eds.): 21-47
33.Gat JR (1996) Oxygen and hydrogen isotopes in the hydrologic cycle. Annual Review of Earth and Planetary Sciences 24: 225-262
34.Gat JR, Carmi I (1970) Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. Journal of Geophysical Research 75: 3039-3048
35.Gehrels H, Peters NE, Hoehn E, Jensen K, Leibundgut C, Griffioen J, Webb B, Zaadnoordijk WJ (2001) Impact of Human Activity on Groundwater Dynamics. IAHS Publication 269
36.Gibson JJ, Edwards TWD, Birks SJ, St Amour NA, Buhay WM, McEachern P, Wolfe BB, Peters DL (2005) Progress in isotope tracer hydrology in Canada. Hydrological Processes 19: 303-327
37.Greenbaum D (1985) Review of remote sensing applications to groundwater exploration in basement and regolith. British Geological Survey Report OD 85:36
38.Healy RW, Cook PG (2002) Using groundwater levels to estimate recharge. Hydrogeology Journal 10: 91-109
39.Hennig GJ, Grun R, Brunnacker K (1983) Speleothems, travertines, and paleoclimates. Quaternary Research 20: 1-29
40.Horton RE (1933) The role of infiltration in the hydrologic cycle. Transactions of American Geophysical Union 14: 446-460
41.Jaiswal RK, Mukherjee S, Krishnamurthy J, Saxena R (2003) Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development-an approach. International Journal of Remote Sensing 24: 993-1008
42.Ketchum J, Donovan J, Avery W (2000) Recharge characteristics of a phreatic aquifer as determined by storage accumulation. Hydrogeology Journal 8: 579-593
43.Kohlmeier M, Massman J, Wulkau M, Ziefle G (2007) Rockflow 5, User Manual, Keyword Description-Institut fuer Stroemungsmechanik. Leibnitz Universitaet Hannover
44.Krishnamurthy J, Venkatesa Kumar N, Jayaraman V, Manivel M (1996) An approach to demarcate groundwater potential zones through remote sensing and geographic information system. International Journal of Remote Sensing 17: 1867-1884
45.Kulandaiswamy VC, Seetharaman S (1969) A note on Barnes’ method of hydrograph separation. Journal of Hydrology 9: 222-229
46.Kumar US, Sharma S, Navada SV (2008) Recent studies on surface water–groundwater relationships at hydro-projects in India using environmental isotopes. Hydrological Processes 22: 4543-4553
47.Lattman LH, Parizek RR (1964) Relationship between fracture traces and the occurrence of groundwater in carbonate rocks. Journal of Hydrology 2: 73-91
48.Leblanc M, Leduc C, Razack M, Lemoalle J, Dagorne D, Mofor L (2003) Application of remote sensing and GIS for groundwater modeling of large semiarid areas: example of the Lake Chad Basin, Africa. Hydrology of Mediterranean and Semiarid Regions Conference, Montpieller, France, April 2003, IAHS (Red Books Series), Wallingford, UK, 278: 186-192
49.Leduc C, Favreau G, Schroeter P (2001) Long-term rise in a Sahelian water table: the Continental Terminal in southwest Niger. Journal of Hydrology 243: 43-54
50.Lee CH, Chen WP, Lee RH (2002) Estimate Ground-Water Recharge of Taiwan from Base-Flow-Record Method. Journal of Taiwan Water Conservancy 50: 54-66 (in Chinese)
51.Lee CH, Chen WP, Lee RH (2006) Estimation of Groundwater Recharge Using Water Balance Coupled with Base-Flow-Record Estimation and Stable-Base-Flow Analysis. Environmental Geology 51: 73-82
52.Lee KS, Grundstein AJ, Wenner DB, Choi MS, Woo NC, Lee DH (2003) Climatic controls on the stable isotopic composition of precipitation in Northeast Asia. Climate Research 23: 137-148
53.Lee KS, Lee CB (1999) Oxygen and hydrogen isotopic composition of precipitation and river waters in South Korea. Journal of the Geological Society of Korea 35: 73-84
54.Lee KS, Wenner DB, Lee I (1999) Using H- and O-isotopic data for estimating the relative contributions of rainy and dry season precipitation to groundwater: example from Cheju Island, Korea. Journal of Hydrology 222: 65-74
55.Lee Kwang-Sik, Kim Y (2007) Determining the seasonality of groundwater recharge using water isotopes: a case study from the upper North Han River basin, Korea. Environmental Geology 52: 853-859
56.Li F, Pan G, Tang C, Zhang Q, Yu J (2008) Recharge source and hydrogeochemical evolution of shallow groundwater in a complex alluvial fan system, southwest of North China Plain. Environmental Geology DOI 10.1007/s00254-007-1059-1 (in press)
57.Lin MS, Lin WH (1998) Explanatory text of the geologic map of Taiwan. Scale 1:50,000 Sheet 64, Central Geological Survey, Taiwan
58.Linsley RK, Jr Kohler MA, Paulhus JLH (1982) Hydrology for Engineers, 3rd edition McGraw-Hill New York
59.Liu Y, Fan N, An S, Bai X, Liu F, Xu Z, Wang Z, Liu S (2008) Characteristics of water isotopes and hydrograph separation during the wet season in the HeishuiRiver, China. Journal of Hydrology 353: 314-321
60.Louie M, Shelby PJ, Smesrud, Gatchell l, Selker J (2000) Filed evaluation of passive capillary samplers for estimating ground water recharge. Water Resources Research 36: 2407-2416
61.Lu HY, Peng TR, Liu TK, Wang CH, Huang CC (2006) Study of stable isotopes for highly deformed aquifers in the Hsinchu-Miaoli area, Taiwan. Environmental Geology 50: 885-898
62.Majoube M (1971) Fractionnement en oxygène-18 et en deutèrium entre ľeau et sa vapeur. Journal of Chemical Physics 197: 1423-1436
63.Mau DP, Winter TC (1997) Estimating ground-water recharge from streamflow hydrographs for a small mountain watershed in a temperate humid climate, New Hampshire, USA. Ground Water 35:291–304
64.McDonald MG, Harbaugh AW (1988) A modular three dimensional finite difference ground-water flow model, U.S. Geological Survey Techniques of Water-Resources Investigations
65.Mein RG, Larson CL (1973) Modeling infiltration during a steady state rain. Water Resources Research 9: 384-394
66.Merlivat L, Jouzel J (1979) Global climatic interpretation of the deuterium oxygen-18 relationship for precipitation. Journal of Geophysical Research 84: 5029-5033
67.Mileham L, Taylor R, Thompson J, Todd M, Tindimugaya C (2008) Impact of rainfall distribution on the parameterisation of a soil-moisture balance model of groundwater recharge in equatorial Africa. Journal of Hydrology 359: 46-58
68.Mukherjee S (1996) Targeting saline aquifer by remote sensing and geophysical methods in a part of Hamirpur-Kanpur, India. Hydrogeology Journal 19: 53-64
69.Murthy KSR (2000) Groundwater potential in a semi-arid region of Andhra Pradesh-a geographical information system approach. International Journal of Remote Sensing 21: 1867-1884
70.Nathan RJ, McMahon TA (1990) Evaluation of automated techniques for base flow and recession analysis. Water Resources Research 26: 1465-1473
71.NRSA (1987) Land and water resources survey of drought affected district-Kolar, Karnataka. Technical Report, National Remote Sensing Agency, Hyderabad
72.O’Leary DW, Friedman JD, Poh HA (1976) Lineaments, linear, lineations: some standards for old terms. Geological Society of American Bulletin, 87: 1463-1469
73.Olmsted FH, Hely AG (1962) Relation Between Groundwater and Surface Water in Brandywine Creek Basin, Pennsylvania.U.S. Geological Survey Professional Paper 417-A 21 p
74.Otto R (2001) Estimating ground water recharge rates in the southeast Holstein region, northern Germany. Hydrogeology Journal 9: 498-511
75.Palmer PC, Gannett MW, Hinkle SR (2007) Isotopic characterization of three groundwater recharge sources and inferences for selected aquifers in the upper Klamath Basin of Oregon and California, USA. Journal of Hydrology 336: 17-29
76.Parlange JY, Hogarth WL, Barry DA, Parlange MB, Haverkamp R, Ross PJ, Steenhuis TS, DiCarlo DA, Katul G (1999) Analytical Approximation to the Solution of Richards’ Equation with Applications to Infiltration, Ponding, and Time Compression Approximation. Advances in Water Resources 23: 189-194
77.Payne BR, Yurtsever Y (1974) Environmental isotopes as a hydrogeological tool in Nicaragua. Isotope Techniques in Groundwater Hydrology. IAEA, Vienna: 193-201
78.Perry EC, Grundl T, Gilkeson RH (1980) H, O, S isotopic study of the groundwater in the Cambrian-Ordovician acquifer system of northern Illinois. In: Isotope Studies of Hydrologic Processes (Perry EC, Montgomery CW eds.) Northern Illinois University, Illinois: 35-43
79.Philip JR (1957) The theory of infiltration, 4, Sorptivity and algebraic infiltration Equation. Soil Science 84: 257-264
80.Pruess K, Oldenburg C, Moridis G (1999) TOUGH2 User’s Guide, Version 2.0, Lawrence Berkeley Lab. Rep. LBNL-43134 UC-400, Berkeley, CA
81.Rahman A (2008) A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Applied Geography 28: 32–53
82.Rutledge AT (1992) Methods of using streamflow records for estimating total and effective recharge in the Appalachian Valley and Ridge, Piedmont, and Blue Ridge physiographic provinces, in Hotchkiss, W.R. and Johnson, A.I., eds., Regional aquifer systems of the United States, aquifers of the southern and eastern states. American Water Resources Association Monograph Series 17: 59-73
83.Rutledge AT (1993) Computer Programs for Describing the Recession of Ground-Water Discharge and for Estimating Mean Ground-Water Recharge and Discharge from Streamflow Records. U.S. Geological Survey. Water Resources Investigations Report 93-4121, 45 p
84.Rutledge AT (1998) Computer programs for describing the recession of ground-water discharge and for estimating mean ground-water recharge and discharge from streamflow records-update. U.S. Geological Survey Water-Resources Investigations Report 98-4148, 43 p
85.Rutledge AT (2000) Considerations for use of the RORA program to estimate ground-water recharge from streamflow records. U.S. Geological Survey Open-File Report 00-156, 44 p
86.Rutledge AT and Daniel III CC (1994) Testing an automated method to estimate ground-water recharge from streamflow records. Ground Water 32: 180-189
87.Sakai H, Matsubaya O (1977) Stable isotopic studies of Japanese geothermal system. Geothermics 5: 97-124
88.Salama RB, Tapley I, Ishii T, Hawkes G (1994) Identification of areas of recharge and discharge using Landsat-TM satellite imagery and aerial photography mapping techniques. Hydrogeology Journal 162: 119-141
89.Sanjo K (1991) Isotope hydrology of Mt. Tsukuba. Science reports of the Institute of Geoscience, University of Tsukuba, 12: 1-36
90.Santhi C, Allen PM, Muttiah RS, Arnold JG, Tuppad P (2008) Regional estimation of base flow for the conterminous United States by hydrologic landscape regions. Journal of Hydrology 351: 139-153
91.Saraf AK, Choudhury PR (1998) Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. International Journal of Remote Sensing 19: 1825-1841
92.Saraf AK, Choudhury PR, Roy B, Sarma B, Vijay S, Choudhury S (2004) GIS based surface hydrological modelling in identification of groundwater recharge zones. International Journal of Remote Sensing 25: 5759–5770
93.Sener E, Davraz A, Ozcelik M (2005) An integration of GIS and remote sensing in groundwater investigations: A case study in Burdur, Turkey. Hydrogeology Journal 13: 826-834
94.Senturk F, Bursali S, Omay Y, Ertan I, Guler S, Yalcin H, Onhan E (1970) Isotope techniques applied to groundwater movement in the Konia plain. In: Isotope Hydrology. IAEA, Vienna: 153-161
95.Shaban A, Khawlie M, Abdallah C (2006) Use of remote sensing and GIS to determine recharge potential zone: the case of Occidental Lebanon. Hydrogeology Journal 14: 433-443
96.Shahid S, Nath SK, Roy J (2000) Groundwater potential modeling in a soft rock area using a GIS. International Journal of Remote Sensing 21: 1919-1924
97.Sharp Z (2007) Principles of stable isotope geochemistry: Pearson Prentice Hall, New Jersey, 344p
98.Singh AK, Prakash SR (2002) An integrated approach of remote sensing, geophysics and GIS to evaluation of groundwater potentiality of Ojhala sub-watershed. Mirjapur district, U. P., India, www.GISdevelopment.net
99.Solomon S, Quiel F (2006) Groundwater study using remote sensing and geographic information system (GIS) in the central highlands of Eritrea. Hydrogeology Journal 14: 1029-1041
100.Szilagyi J, Vorosmarty CJ (1997) Modeling unconfined aquifer level reductions in the area between the Danube and Tisza Rivers in Hungary. Journal of Hydrology and Hydromechanics 45: 328-347
101.Tweed SO, Leblanc M, Webb JA, Lubczynski MW (2007) Remote sensing and GIS for mapping groundwater recharge and discharge areas in salinity prone catchments, southeastern Australia. Hydrogeology Journal 15: 75-96
102.Van Der Straaten CM, Mook WG (1983) Stable isotopic composition of precipitation and climatic variability. In: Palaeoclimates and Palaeowater. IAEA, Vienna: 53-64
103.Vandenschrick G, van Wesemael B, Frot E, Pulido-Bosch A, Molina L, Stie´venard M, Souchez R (2002) Using stable isotope analysis (δD and δ18O) to characterise the regional hydrology of the Sierra de Gador, south east Spain. Journal of Hydrology 265: 43-55
104.Wang CH (2007) The Impacts of Climate Chang on the Groundwater Environment of Taiwan. Bulletin of Central Geological Survey, Ministry of Economic Affairs, 18: 239-255 (in Chinese)
105.Wang CH, Kuo CH, Chang FC (2004) The Changing Face of the Groundwater Environmental in Taiwan. Bulletin of Central Geological Survey, Ministry of Economic Affairs, 17: 1-22 (in Chinese)
106.Wang CH, Kuo CH, Peng TR, Chen WF, Liu TK, Chiang CJ, Liu WC, Hung JJ (2001) Isotope Characteristics of Taiwan Groundwaters. Western Pacific Earth Sciences 1: 415-428
107.Wang CH, Peng TR (2001) Hydrogen and oxygen isotopic compositions of Taipei precipitation: 1990 - 1998. Western Pacific Earth Sciences 11: 429-442
108.Water Resources Agency (WRA) (2005) Hydrological Year Book of Taiwan. Republic of China. Ministry of Economic Affairs, Republic of China, Taipei
109.Water Resources Planning Commission (WRPC) (1992) Groundwater Resources in Taiwan. Ministry of Economic Affairs, Republic of China, Taipei
110.Wright WE (2001) δD and δ18O in mixed conifer systems in the U.S. Southwest: The potential of δ18O in Pinus ponderosa tree rings as a natural environmental recorder. Ph.D. Dissertation, Department of Geosciences, University of Arizona, Tucson
111.Yeh HF, Chang PH, Hsu KC, Lee CH (2007) Assessment of Groundwater Recharge in Chih-Pen and Jin-Lin Creek Basins, Proceedings of 3rd Conference on Resources Engineering in Taiwan, 1-15 (in Chinese)
112.Yeh HF, Chen JF, Lee CH (2004) Application of a water budget model to evaluate rainfall recharge and slope stability. Journal of the Chinese Institute of Environmental Engineering 14: 227-237
113.Yeh HF, Lee CH, Chen JF, Chen WP (2007) Estimation of Groundwater Recharge Using Water Balance Model. Water Resources 34: 171-180
114.Yen TP (1970) Structural analysis of the slate formation of Taiwan. Bulletin of the Geological Survey of Taiwan, 21:1-51
115.Yurtesever Y, Gat JR (1981) Atmospheric waters. In: Gat JR, Gonfiantini R (Eds) Stable isotope hydrology: deuterium and oxygen-18 in the water cycle. IAEA Technical Report Series No. 210, 103-142
116.Zektser IS (2002) Principles of regional assessment and mapping of natural groundwater resources. Environmental Geology 42: 270-274
117.Zhang L, Dawes WR, Hatton TJ, Reece PH, Beale GTH, Packer I (1999) Estimation of soil moisture and groundwater recharge using the TOPOG_IRM model. Water Resources Research 35: 149-161
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔