跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/24 09:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張惟敦
研究生(外文):Wei-Tun Chang
論文名稱:淺層隧道開挖引致節理岩盤變形特性之研究
論文名稱(外文):Deformation characteristic of the shallow tunnel excavation on inclined joint rock mass using trap door test
指導教授:林宏明林宏明引用關係陳昭旭陳昭旭引用關係
指導教授(外文):hung-Ming LinChao-hsu Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:108
中文關鍵詞:Phase2DDA落門試驗近景攝影測量拱效應
外文關鍵詞:Phase2trapdoor testclose-range photo-grammetryDDA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
為模擬於淺覆蓋或偏壓之節理地層中,因隧道開挖所引起的工程災害,本研究採用落門試驗進行單、雙孔隧道開挖引致地表沉陷與地層變動特性之探討,並利用近景攝影測量技術做為量測工具,探討隧道開挖後,地表之沉陷變形與隧道頂拱上方整體岩體變動的影響範圍,再利用數值模擬進行試驗結果驗證與比較。
試驗結果顯示在淺覆蓋水平地表之單隧道開挖中,地表沉陷以節理角度45°時之影響範圍最大,影響範圍為3.5D;地層變動特性中,節理角度0°、30°之拱效應影響區高度分別為0.5D與0.25D,節理角度45°、60°則無拱效應影響區產生;在雙孔隧道開挖中,以兩隧道間距S=0.0D對於地表沉陷量與地層變動的影響最為明顯,而兩隧道間距為S=1.0D時進行開挖,無相互干擾的情況且呈現各自獨立之狀態,在此條件下兩隧道頂拱上方皆會有一鬆弛區產生,其高度為0.5D,另外以隧道間距為0.5D時,左側新開挖隧道所產生的鬆弛區高度會小於右側既存隧道開挖後所產生的鬆弛區。在此逆向坡偏壓地層存在不同節理角度下進行隧道開挖,地層的影響範圍會隨隧道位置與節理角度的不同而有所影響,當隧道位置所處覆土平均高度越高時,則所產生的影響範圍也相對較廣;當地層節理角度越大,對於地層整體地層變動影響範圍越大,對水平地表面的影響也相對越廣。而數值模擬結果顯示,DDA小變位之模擬與試驗結果相比較則有高估的情況產生,其於階段之模擬皆有良好的模擬狀況;Phase2之模擬成果以節理角度60°為例,與試驗結果比較在開挖量為δ=2、4mm時,有良好的模擬成果,達最大開挖量時,則會有低估的情況發生。
In order to simulate construction-related hazards caused by tunnel-digging in shallow-covered or unsymmetry joint formations, in this study the trapdoor test was adopted to discuss the characteristics of the sinking and formation-changes caused by the digging of single or twin tunnels. Close-range photo-grammetry was also utilized as a measurement tool to examine the scope of the changes in the sinking and the rocks above the arch of the tunnel after digging begins. A numerical simulation was then carried out to test and compare the results.
The test result indicates that the scope of influences is at its largest, being 3.5D, when the sinking is at a joint angle of 45° in the digging of a single-tunnel in a shallow-covered terrain. Of the characteristics of formation changes, the heights of the arching effect’s influence zone are respectively 05D and 0.25D when the joint angles are 0° and 30°; no arching effect takes place when the joint angles are 45° and 60°.In the case of the digging of a twin-tunnel, influences on the degree of sinking and formation changes are most significant when the distance between the twin channels is S=0.0D. If the diggings of the twin channels took place when the distance is S=1.0D, did not interfere with each other, and were independent from each other, a disturbed zone each would occur above the arches of the twin channels at the height of 0.5D. In addition, when the distance between the twin channels is 0.5D, the height of the disturbed zone occurred by the digging of the new channel on the left side would be lower than the counterpart on the right. If tunnel-digging were to take place when different joints angles exist in an anaclinal slope with biased formations, the scope of the influences of the formation would differ depending on the location of the tunnel and the joint angle. The higher the average height of the ground surface where the tunnel is
located is, the broader of the scope of the influences that follow. The greater the joint angles, the broader the scope of the influence on the entire formation-changes – as well as the influences on the ground surface. The numerical simulation reveals that the simulations and testing in DDA small displacement tend to overestimate; the simulations for all other stages, however, show good results. Using a joint angle of 60° as an example, the result of the Phase2 simulation is ideal when the amount of digging is δ=2, 4mm; underestimation tends to occur when the amount of digging is at its maximum.
摘 要.................................................................................................................I
目 錄.................................................................................................................II
圖目錄...............................................................................................................IV
表目錄.............................................................................................................VIII
第一章 緒論.......................................................................................................1
1.1研究動機與目的....................................................................................1
1.2研究流程................................................................................................2
1.3論文內容................................................................................................3
第二章 文獻回顧...............................................................................................5
2.1 地表沉陷分析.......................................................................................5
2.1.1 經驗公式法...................................................................................... 5
2.1.2 物理模型試驗.................................................................................. 9
2.2 拱效應.................................................................................................21
2.2.1 拱效應相關理論..............................................................................21
2.3 隧道破壞模式.....................................................................................25
2.4 近景攝影測量.....................................................................................33
第三章 落門試驗設計.....................................................................................36
3.1 試驗設備.............................................................................................36
3.1.1落門試驗儀器...................................................................................36
3.1.2試驗量測系統...................................................................................37
3.2 試驗規劃.............................................................................................38
3.3剛、柔性介面問題探討......................................................................39
3.4 攝影測量系統精度探討.....................................................................43
第四章 落門試驗設計與成果分析.................................................................46
III
4.1隧道開挖引於水平地表之地層特性分析..........................................46
4.1.1水平地層之單隧道開挖...................................................................46
4.1.2水平地層之雙隧道開挖...................................................................53
4.2偏壓地層單隧道開挖..........................................................................59
第五章 數值模擬分析之結果.........................................................................69
5.1 有限元素分析法之Phase2...............................................................69
5.2 Phase2模擬成果................................................................................74
5.2.1 模型建置..........................................................................................74
5.2.2 模擬成果..........................................................................................75
5. 3不連續位移分析法(DDA)..................................................................78
5.3.1 DDA程式之理論背景概述.............................................................81
5.3.2 DDA塊體之位移與變形.................................................................82
5.3.3 DDA塊體變形矩陣之推導.............................................................84
5.3.4 DDA平衡方程式之建立.................................................................85
5.3.5 DDA塊體之受力條件.....................................................................86
5.3.6 DDA塊體之動力分析.....................................................................86
5.3.7 DDA節理勁度估算.........................................................................94
5.4 DDA模擬成果....................................................................................96
5.4.1水平地表下不同節理角度模擬成果...............................................96
5.4.2 偏壓地層之模擬成果......................................................................98
第六章 結論與建議.......................................................................................101
6.1 結論...................................................................................................101
6.2 建議...................................................................................................102
參考文獻.........................................................................................................103
IV
圖 目 錄
圖 1-1 研究流程圖........................................................................................1
圖 2-1 以常態機率取現表示地表沉陷槽示意圖(PECK,1969).................6
圖 2-2 不同土層隧道深度與沉陷槽寬度參數之無因次關係
(PECK,1969).....................................................................................7
圖 2-3 不同土層下Β角對沉陷槽寬度之關係圖
(PECK, 1969)....................................................................................8
圖 2-4 TERZAGHI(1936、1946)落門示意圖...........................................10
圖 2-5 落門試驗於乾砂中模擬結果
(VARDOULAKIS ET AL.,1981)....................................................11
圖 2-6 ADACHI(1993)利用鋁塊堆疊建置之物理模型試驗示意圖.......11
圖 2-7 落門落下2MM於不同傾斜角度與不同覆土厚度之地表沉陷量(PARK,1999)...................................................................................12
圖 2-8 覆土厚度為20CM,不同落門落陷量與不同傾斜角度之
正規化赴土壓力之分佈(PARKAND ADACHI,2002)..................13
圖 2-9 覆土厚度為20CM,不同不同傾斜角度之正規化覆土壓
力與落門落陷量關係圖(PARKAND ADACHI,2002)..................13
圖 2-10 落門落下2MM,不同覆土厚度與傾斜角度之地表沉
陷量分佈(PARK AND ADACHI, 2002)........................................14
圖 2-11 試驗模型及儀器配置圖(CHAMBON, 1994)................................15
圖 2-12地表沉陷量與應力關係圖(CHAMBON, 1994).............................16
圖 2-13試驗模型與破壞機制 (STERPI ET AL., 1996).............................16
圖 2-14隧道模型與破壞形態 (KAMATA AND MASIMO, 2003)............17
圖 2-15無襯砌隧道於緊密砂中之倒塌情況..............................................17
圖 2-16複合層試驗模型與土層變動關係圖
V
(HAGIWARA ET AL., 1999)..........................................................18
圖 2-17 使用有機溶劑管之模型試驗 (SHARMA ET AL., 2001).............18
圖 2-18 多孔隧道於黏土層中試驗模型示意圖
(HAMPAN ET AL., 2006)..............................................................19
圖 2-19 小型隧道開挖機(NOMOTO ET AL., 1999)..................................19
圖 2-20 TERZAGHI 拱效應示意圖(TERZAGHI, 1936)............................21
圖 2-21 完全與部分拱效應覆土壓力圖 (TERZAGHI, 1936)...................23
圖 2-22 完全拱效應與部分拱效應示意圖 (TERZAGHI, 1936)...............23
圖 2-23 TERZAGHI 岩層地拱效應理論示意圖........................................24
圖 2-24 方塊系統之拱效應形態 (TROLLOPE,1969)...............................25
圖 2-25 水平節理岩層之超挖(TERZAGHI, 1946).....................................28
圖 2-26 垂直節理岩層之超挖(TERZAGHI, 1946).....................................29
圖 2-27 傾斜節理岩層之超挖(TERZAGHI, 1946).....................................29
圖 2-28 中等節理岩塊狀岩體之超挖(TERZAGHI, 1946).........................30
圖 2-29 水平層岩石中頂部破壞行為之模型(GOODMAN, 1980)............31
圖 2-30 傾斜岩層破壞型式(GOODMAN, 1980)........................................32
圖 2-31 隧道四壁穩定與不穩定間相當的收斂關係
(GOODMAN, 1980).........................................................................32
圖 2-32地表沉陷三維變形曲線(許明峰,2000)........................................34
圖 2-33地表沉陷剖面圖(許明峰,2000)....................................................35
圖 3-1 落門試驗儀器示意圖........................................................................36
圖 3-2 落門試驗模型示意圖........................................................................39
圖 3-3 落門試驗模型示意圖........................................................................41
圖 3-4 剛性介面試驗....................................................................................41
圖 3-5 不同層數鋁棒之試驗過程...............................................................42
VI
圖 3-6 不同鋁棒層數之沉陷量探討...........................................................42
圖 3-7 雷射剖面儀與攝影測量實驗數據.................................................43
圖 3-8 攝影測量與雷射剖面儀精度比較.................................................44
圖 3-9 攝影測量之地表沉陷量驗證比較.................................................44
圖 3-10 攝影量測值之精度驗證.................................................................45
圖 4-1 節理角度Θ=0°開挖之地表沉陷量分析........................................47
圖 4-2 傾斜節理30°地表沉陷量..............................................................48
圖 4-3 傾斜節理45°地表沉陷量..............................................................48
圖 4-4 傾斜節理60°地表沉陷量..............................................................48
圖 4-5 節理角度Θ=0°開挖之地層變動分析............................................49
圖 4-6 節理角度Θ=30°開挖之地層變動分析..........................................51
圖 4-7 節理角度Θ=45°開挖之地層變動分析..........................................52
圖 4-8 節理角度Θ=60°開挖之地層變動分析..........................................52
圖 4-9 雙隧道開挖引致之地表沉陷量分析(Θ=0°)..................................55
圖 4-10雙隧道間距S=0.0D之地層變動特性(Θ=0°).................................56
圖 4-11雙隧道間距S=0.5D之地層變動特性(Θ=0°).................................57
圖 4-12雙隧道間距S=1.0D之地層變動特性(Θ=0°).................................58
圖 4.13節理30°、覆土平均高度HMEAN=0.5D開挖隧道.........................60
圖 4.14節理30°、覆土平均高度HMEAN=1.0D開挖隧道.........................61
圖 4.15節理30°、覆土平均高度HMEAN=1.5D開挖隧道.........................62
圖 4.16節理45°、覆土平均高度HMEAN=0.5D開挖隧道.........................64
圖 4.17節理45°、覆土平均高度HMEAN=1.0D開挖隧道.........................64
圖 4.18 節理45°、覆土平均高度HMEAN=1.5D開挖隧道........................65
圖 4.19節理60°、覆土平均高度HMEAN=0.5D開挖隧道.........................67
圖 4.20節理60°、覆土平均高度HMEAN=1.0D開挖隧道.........................68
VII
圖 4.21節理60°、覆土平均高度HMEAN=1.5D開挖隧道 ...................68
圖 5.1 各種節理面剪力變形曲線(GOODMAN, 1968)..............................70
圖 5.2 DDA塊體之平移示意圖(翁啟鐘,2003).....................................76
圖 5.3 DDA塊體之繞點轉動示意圖
(翁啟鐘,2003)................................................................................76
圖 5.4 DDA塊體之正向變形示意圖........................................................77
圖 5.5 DDA塊體之剪力變形示意圖(翁啟鐘,2003).............................78
圖 5.6 DDA與試驗結果之比較圖............................................................87
圖 5.7 DDA與試驗之塊體變動特性........................................................87
圖 5.8 DDA與攝影測量之精度比較........................................................88
圖 5.9 地表沉陷量分析與精度比較)........................................................91
圖 5.10 數值模擬和試驗之地層變動特性比較(Θ=0°)..............................92
圖 5.11 數值模擬和試驗之地層變動特性比較(Θ=30°)............................92
圖 5.12 數值模擬和試驗之地層變動特性比較(Θ=45°)............................93
圖 5.13 數值模擬和試驗之地層變動特性比較(Θ=60°)............................93
圖 5.14 節理角度30°、覆土平均厚度HMEAN=0.5D之模擬結果............94
圖5-15 偏壓地層節理30°、平均覆土厚度HMEAN=1.0D之模擬結果.....95
圖5-16 PHASE2數值模型..........................................................................96
圖5-17 PHASE2程式分階段開挖模式......................................................97
圖5-18 節理角度60°之PHASE2模擬地表沉陷量...................................98
圖5-19 節理角度60°之PHASE2模擬之地層變動特性...........................99
圖5-20 節理角度60°之PHASE2模擬之地層變動特性.........................100
VIII
表 目 錄
表 2.1 各種物理模型試驗之優、缺點比較(MEGUID ET AL., 2008) ....20
表 3-1鋁塊與鋁棒之物理性質.....................................................................31
表 3.2 相機校正參數....................................................................................31
表 3.3試驗規劃內容.....................................................................................38
表 5.1 材料基本參數設定............................................................................97
王正忠,「以近景攝影測量進行模型式建物重建」,國立成功大學測量工程學系碩士論文,2002。
江國豐,「應用不連續變形分析法於順向岩坡穩定分析之探討」,國立高雄第一科技大學營建工程系碩士論文,2004。
林宏明、張惟敦、張羊進、陳昭旭,「節理岩盤中淺隧道開挖引致地層變動特性之研究」,地下開發與防災之創新科技研究成果發表研討會,台南,第141-163頁,2008。
許銘峰,「攝影測量在離心模型試驗之應用-以離心隧道模型之地表沉陷量量測為例」,國立中央大學土木工程研究所碩士論文,2000。
鄒子廉,「台灣地區隧道地質災害模式之研究」,國立中央大學應用地質研究所碩士論文,1993。
謝興宇,「半無限域節理岩體中雙孔隧道開挖之力學行為」,國立中興大學土木工程研究所碩士論文,1994。
Adachi, T., Kimura, M., Osada, H., “Interaction between Multi-Tunnels under Construction”, Eleventh South Asian Geotechnical Conference,singapore, pp. 51-60, 1993.
Atkinson, J.H. and D.M. Potts, “Stability of a Shallow Circle Tunnel in Cohesionless Soil,” Geotechnique 27, No.2, pp. 203-215, 1977.
Atkinson, J.H., Brown, E.T., Potts, M.,” Collapse of Shallow Unlined Tunnels in Dense Sand”, Tunnels and Tunnelling Vol. 3, pp.81–87, 1975.
Bucky, B.P., “The use of Models for the Study of Mining Problems”,
104
Technical Publication, American Institute of Mining Engineers, pp.425, 1931.
Chambon, P., Corte, J.F., “Shallow Tunnels in Cohesionless Soil: Stability of Tunnel Face”, Journal of Geotechnical Engineering, Vol.120, No.7, pp. 1148–1165, 1994.
Chambon, P., Corte, J.F., Garnier, J., “Face Stability of Shallow Tunnels in Granular Soils”, Proceedings of an International Conference on Centrifuge. A.A. Balkema, Rotterdam, pp. 99–105, 1991.
Champan, D.N., Ahn, S.K., Hunt, D.V.L., Chan, H.C., “The Use of Model Tests to Investigate the Ground Displacement Associated with Multiple Tunnel Construction in Soil”, Tunnels & Tunneling, Vol. 21, No. 3, pp. 413, 2006.
Cording, E.J., and Hansmire, W.H., “Displacement around Soft Ground Tunnels,” Proc. 6th Panamerican Conf. on Soil Mechanics and Foundation Engineering, Buenon Aires, pp. 571-633, 1975.
Goodman, R.E., ”Introduction to Rock Mechanics”, Second Edition, John Wiley Sons, New York, pp. 156-164 and 233-249 1989.
Grun, A., “Semi-automated approaches to Site Recording and Modeling”, International Archives of Photogrammetry and Remote Sensing, vol. 33, part B5, Amsterdam, pp. 309-318, 2000.
Hagiwara, T., Grant, R.J., Calvello, M., Taylor, R.N., “The Effect of Overlying Strata on the Distribution of Ground Movements Induced by Tunneling in Clay”, Soils and Foundations, Vol. 39, No. 3, pp. 63–73, 1999.
Handy, R.L., ”The Arch in Soil Arching,” Joural of Geotechnical Engineering,
105
ASCE, Vol. 3, No. 3, pp. 302-318, 1985.
Hoek, E. and Brown, E.T., “Practical Estimates of Rock Mass”, Int. J. Rock Mech. Min. Sci. Vol.34, No.8, pp. 1165-1186, 1997.
Hoek, E. and Brown, E.T., “The Hoke-Brown Failure Criterion-A 1988 Update”, Proceedings of 15th Canadian Rock Mechanics Symposium, pp. 31-38, 1988.
Hoek, E. and Brown, E.T., ”Empirical Strength Criterion for Rock Masses”, J. Geotech. Eng. Div., ASCE 106(Gt9), pp. 101, 1980.
Kamata, H., Masimo, H., “Centrifuge model test of Tunnel Face Reinforcement by Bolting”, Tunnelling and Underground Space Technology, Vol. 18, No. 2, pp. 205, 2003.
Kim, S.H., “Interaction between Closely Spaced Tunnels in Clay”, Ph.D., Thesis, Oxford University, UK, pp. 242, 1996.
Ladanyi, B., Hoyaux, B., “A Study of the Trap Door Problem in a Granular Mass”, Canadian Geotechnical Journal, Vol.6, No. 1, pp.1–14,1969.
Love, J.P., “Model Testing of Geogrid in Unpaved Roads”, D.Phil. Thesis, Oxford University, UK, 1984.
Meguid, M.A., Saada, O., Nunes, M.A., and Mattar, J., “Physical Modeling of Tunnels in Soft Ground : A Review”, Tunnelling and Underground Space Technology, Vol. 23, pp. 185-198,2008.
NCB, “Subsidence Engineer’S Handbook”, National Coal Board, London, pp. 111, 1965 and 1975.
Nomoto, T., Imamura, S., Hagiwara, T., Kusakabe, O., Fujii, N., ”Shield Tunnel Construction in Centrifuge”, Journal of Geotechnical and
106
Geoenvironmental Engineering, Vol. 125, No. 4, pp. 289–300, 1999.
Ohinshi Y., and Nishiyama S., “Recent Insights of Analyses Using Discontinuous Methods in The Rock Engineering in Japan”, Proceedings Of The 8th International Conference on Analysis of Discontinuous Deformation: Fundamentals and Applications to Mining & Civil Engineering-8, pp. 24, 2007.
Park, S.H., “Mechanical Behaviors of Ground with Inclined Layers during Tunnel Construction”, Ph.D. dissertation, Department of Civil Engineering, Faculty of Engineering, Kyoto University, Japan, 2001.
Park, S.H., Adachi, T., Kimura, M., Kishida, K., “Trap door test using aluminum blocks”, In: Proceedings of the 29th Symposium of Rock Mechanics. J.S.C.E., pp. 106–111, 1999.
Park, S.H., and Adachi, T., ”Laboratory Model Tests and Analyses on Tunneling in The Unconsolidated Ground with Inclined Layers”, Tunneling and Underground Space Technology, Vol. 17, pp. 181-193, 2002.
Peck, R.B., “Deep Excavation and Tunneling in Soft Ground”, Seventh Int. Conf. Soil Mechanics and Foundation, Mexico City, pp. 225-290, 1969.
Pokrovsky, G.I., Fedorov, I.S., “ Studies of Soil Pressures and Soil Deformations by Means of a Centrifuge. In: Proceedings of the First International Conference ISSMFE (Harvard), Vol. I, pp.70,1936.
Remondino, F., Zhang, L., “Surface reconstruction algorithms for detailed close-range object modeling”, IAPRS&SIS, Vol. 36(3), pp. 117-121, Bonn, Germany, 2006.
Roncella, R., Scaioni, M. and Forlani, G., “Application of Digital
107
Photogrammetry in Geotechnics”, XXth ISPRS Congress, Istanbul, Turkey, Commission 5, pp. 93-89, 12-23 July 2004.
Ryu, M., Nakai, T., Fuzimura, K., Ohnishi, Y., Nishiyama, S., Yano T. and Lee, D.H., “Application of Photogrammetry Method on a Slope Monitoring in Taiwan” ISRM International Symposium 3rd ARMS, pp. 787-790, 2004.
Sharma, J.S., Bolton, M.D., and Boyle, R.E., “A new Technique for Simulation of Tunnel Excavation in a Centrifuge”, Geotechnical Testing Journal, Vol. 24, No. 4, pp.343–349,2001.
Shi, G. H., ”Discontinuous Deformation Analysis: A New Numerical Model for the Statics and Dynamics of Block Systems”, Ph.D. Thesis, Depatrment of Civil Engineering, University of California, Berkeley, 1989.
Sterpi, D., Cividini, A., Sakurai, S., Nishitake, S., Laboratory Model Tests and Numerical Analysis of Shallow Tunnels. In: Barla, G. (Ed.), Proceedings of the International Symposium on Eurock `96 – ISRM, Torino, Vol. 1. Balkema, Rotterdam, pp. 689–696, 1996.
Terzaghi, K., “Theoretical Soil Mechanics”, John Wiley and Sons, New York, pp. 66-76, 1943.
Terzaghi, K., ”Rock Defects and Loads on Tunnel Support”, In: R.V. Proctor and T. L. White, Editors, Rock Tunneling with Steel Supports, Vol. 1, Commercial Shearing and Stamping Co., Youngstown, Ohio, pp. 17-99, 1946.
Terzaghi, K., ”Stress Distribution in Dry and in Saturated Sand Above a Yielding Trap-Door”, Proceedings, First International Conference on Soil
108
Mechanics and Foundation Engineering, Cambridge, Massachusetts, pp. 307-311, 1936.
Trollope, D.H., “The Mechanics of Discontinua or Clastic in Rock Problem”, in Rock Mechanics in Enginering Practice (ed. by Stagg, K. G. and O. C. Zienkiewicz): pp. 275-322, 1968.
Trollope, D.H., “The Systematic Arching Theory Applied to The Stability Analysis of Embankments”, Proceedings, Fourth International Conference on Soil Mechanics and Foundation Engineering, Vol.2, pp. 382-388, 1957.
Vardoulakis, I., Graf, B., Gudehus, G., “Trap-door Problem with Dry Sand: a Statical Approach Based Upon Model Test Kinematics”, International Journal for Numerical and Analytical Methods in Geomechanics , Vol. 5, pp.57–78,1981.
Visnovcova, J., Zhang, L., Gruen, A., “Generating a 3D model of a Bayon tower using non-metric imagery”, Asian Journal of Geoinformatics, Vol. 2, No.1, September 2001, pp. 11-18, 2001.
Whittaker, B.N. and Reddish, D.J., “Subsidence Occurrence, Prediction and Control”, Elsevier, Amsterdam, Netherlands, pp. 33-50, 1989.
Wu, J.H., Ohnishi Y., Nishiyama S., “Simulation of the Mechanical Behavior of Inclined Jointed Rock Masses During Tunnel Construction using Discontinuous Deformation Analysis (DDA)”, International Journal of Rock Mechanics & Mining Sciences, Vol. 41, pp.731–743 ,2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top