跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/03 23:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙海耀
研究生(外文):Hoi-Io Chio
論文名稱:以>50nmθ-Al2O3生產球型α-Al2O3粉末之研究
論文名稱(外文):Spherical α-Al2O3 powder preparation using θ-Al2O3 crystallites of sizes > 50 nm
指導教授:顏富士顏富士引用關係
指導教授(外文):Fu-Su Yen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:82
中文關鍵詞:球型研磨相轉換
外文關鍵詞:sphericalMilling timesphase transformation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以 boehmite (AlOOH) 為原料,透過θ-Al2O3到α-Al2O3相轉換過程為一般生產α- Al2O3最常用的方法之一。最近研究指出 θ→α-Al2O3 的相轉換過程,具有臨界晶徑 (dcθ約25 nm) 現象。當θ- 晶粒尺寸小於 dcθ時,需長大至 dcθ 尺寸α-核晶才會生成。生成後的α- 晶核會以聚合的方式成長。在 α-晶粒成長超過 75-100 nm 後,粒子之蠕蟲狀成長現象可能旋即發生。當θ- 晶粒尺寸大於 dcθ 時,α-核晶在生成後可能會以晶界推移方式向外成長,若處理得當則可獲得一與θ- 粒子相近大小的 α- 粒體。又θ-Al2O3 粒體大小可由相近尺寸之 boehmite 經相轉換而得。
據此,本研究探討藉由改變粒徑尺寸 > 50 nm 的起始原料 boehmite 的粒徑,使相變為相似粒徑的 θ-Al2O3。再配以熱處理方式來獲得不同粒徑之球型 α-Al2O3 粉末。研究結果顯示:
1. boehmite→θ-Al2O3相轉換過程中,θ- 大小可以維持原 boehmite 的大小。
2. θ-→α-Al2O3相轉換過程中,當α-生成量較低時,推測θ-粒子可相轉換為相似粒徑的 α-Al2O3 粒子。但隨著生成量的增量,α-粒子容易長大。
3. 以研磨方式加入 ZrO2 ,研磨時間越長,boehmite 的粒徑越小,唯相變溫度反而更低,應與研磨提供的機械應力有關。
4. 藉由研磨方式添加的ZrO2,可抑制α- Al2O3 晶粒的成長。
5. 本研究所得到的α-Al2O3為多晶球型體。
θ- to α-Al2O3 phase transformation is one of the most popular used methods for preparation of α-Al2O3 crystallites.As the θ-Al2O3 size was smaller than dcθ ~ 25 nm , α-crystallite growth could be progressed by coalescence mechanism. The coalescent crystallite growth was dcθ. Coalescence of the crystallites of size 75-100 nm leads to forming the crystallites with vermicular growth.As the θ-Al2O3 size was larger than the critical size (dcθ) needed for the formation of α-Al2O3 nucleus, the growth of α-crystallites could be performed by interface boundary migration once the α-nucleus formed in the parent phase (θ-Al2O3 crystallites). The size of new-formed α-Al2O3 may be controlled by that θ-crystallites.Another the size of θ-Al2O3 may be controlled by that of boehmite particles.
In this study, θ-Al2O3 transformed from boehmite with various particle size and particles-scale larger than 50 nm. And spherical α-Al2O3 powders will be obtained through appropriate thermal treatments. It was found that:
1. The size of θ-Al2O3 may be control by boehmite particles.
2. The size of new-formed α-Al2O3 may be controlled by θ-Al2O3 particles.The formation of α-Al2O3 tended to increase with the growth of the particle size of α-Al2O3.
3. Milling times to increase with the reduction of the particle size of boehmite, and phase transformation temperature will be decrease , it should be mechanical stress effect.
4. α-crystallites growth may be restrain by the ZrO2 particles.
5. α-Al2O3 is polycrystalline particle in this study.
中文摘要 I
Abstract II
誌謝 III
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1前言 1
1.2 研究動機與目的 2
第二章 理論基礎與前人研究 3
2.1 氧化鋁 3
2.1.1 Boehmite 3
2.1.2 θ-Al2O3 3
2.1.3 α-Al2O3 4
2.2 θ-→α-Al2O3相轉換理論基礎 9
2.3 θ-→α-Al2O3相轉換熱行為觀察 10
2.4 製備球型氧化鋁相關的前人研究 14
第三章 實驗方法與步驟 16
3.1 實驗構想與設計 16
3.2 實驗步驟與流程 16
3.3 實驗原料製備 16
3.3.1 Boehmite 粉末之製備與細化處理 16
3.4 特性分析 25
3.4.1 粉末結晶相分析 25
3.4.2 Al2O3粉體之平均晶徑分析 25
3.4.3 熱行為分析 25
3.4.4 粒徑分佈量測 25
3.4.5 比表面積分析 26
3.4.6 微結構觀察 26
3.4.7 α-Al2O3生成量分析 26
3.4.8 ZrO2 的含量分析 27
第四章 結果與討論 30
4.1 θ -Al2O3 粒徑是否等於 boehmite 粒徑 30
4.1.1 θ-Al2O3煆燒粉的獲得 30
4.1.2 boehmite粒徑與 θ-Al2O3 粒徑的關係 37
4.2 α -Al2O3 粒徑與 θ -Al2O3 粒徑的關係 41
4.3 影響α -Al2O3圓(球)化的原因 45
4.3.1 阻止晶粒粗化方法 45
4.3.2 ZrO2 的添加方法 45
4.3.3 熱處理方法 49
4.3.4 DTA 分析 49
4.3.5 α-生成量分析 49
4.3.6 θ-晶徑分析 49
4.3.7 α-晶徑分析 50
4.3.8 以研磨方式添加 ZrO2 對α- Al2O3 的影響 50
第五章 結論 59
參考文獻 60
Appendix I 65
Appendix II 69
Appendix III 72
1.M. Mazloumi, R. Khalifehzadeh, S. K. Sadrnezhaad, and H. Arami, “Alumina Nanopowder Production from Synthetic Bayer Liquor,” J. Am. Ceram. Soc., 89 [12] 3654-3657 (2006).
2.C. N. Satterfield, Heterogeneous Catalysis in Practice. McGraw-Hill, NY, 1980.
3.X. Bokhimi, J. S. Valente, and F. Pedraza, “Crystallization of Sol-Gel Boehmite via Hydrothermal Annealing,” J. Solid State Chem., 166, 182-190 (2002).
4.M. N. Rahaman, Ceramic Processing and Sintering, 2nd edition, Marcel Dekker Inc., USA, 2003.
5.F. W. Dynys and J. W. Halloran, “Alpha Alumina Formation in Alum-Derived Gamma Alumina,” J. Am. Ceram. Soc., 65 [9] 442-448 (1982).
6.P. A. Badkar and J. E. Bailey, “The Mechanism of Simultaneous Sintering and Phase Transformation in Alumina,” J. Mater. Sci., 11, 1794-1806 (1976).
7.A. Tonejc, A. M. Tonejc, D. Bagović, and C. Kosanović, “Comparison of the Transformation Sequence from γ-AlOOH (boehmite) to α-Al2O3 (corundum) Induced by Heating and by Ball Milling,” Mater. Sci. Eng. A, 181, 1227-1231 (1994).
8.Y. Wang, C Suryanarayana, and L. An, “Phase Transformation-Sized γ-Alumina by Mechanical Milling,” J. Am. Ceram. Soc., 88 [3] 780-783 (2005).
9.S. Liu, L. Zhang, and L. An, “Phase Transformation of Mechanically Milled Nano-Sized γ-Alumina,” J. Am. Ceram. Soc., 88 [9] 2559-2563 (2005).
10.P. K. Sharma, M. H. Jilavi, D. Burgard, R. Nass, and H. Schmidt, “Hydrothermal Synthesis of Nanosize α-Al2O3 from Seeded Aluminum Hydroxide,” J. Am. Ceram. Soc., 81 [10] 2732-2734 (1998).
11.J. Yang, S. Mei, and José M. F. Ferreira, “Hydrothermal Synthesis of Submicrometer α-Alumina from Seeded Tetraethyl Ammonium Hydroxide -Peptized Aluminum Hydroxide,” J. Am. Ceram. Soc., 86 [12] 2055-2058 (2003).
12.K. Kamiya, J. Yotani, R. Senba, J. Matsuoka, and H. Nasu, “Sol-Gel Preparation of Alumina Gels Forming α-Alumina around 500℃,” J. Ceram. Soc. Jap., Int. Edition, 104 [7] 685-687 (1996).
13.游佩青,類均質條件下奈米θ-Al2O3微粒之晶粒成長現象觀察,國立成功大學資源工程研究所,博士論文,2008年6月。
14.H. S. Santos, P. K. Kiyohara, and P. S. Santos, “Pseudomorphic Transformations of Euhedral Crystals of γ-AlOOH into Aluminas” Ceram. Inter., 20 175-181 (1994).
15.K. Wefers and C. Misra, “Oxides and Hydroxides of Aluminum,” Alcoa Technical Paper No.19, Alcoa Laboratories, Pittsburgh, PA, 1987.
16.I. Levin and D. Brandon, “Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences,” J. Am. Ceram. Soc., 81, 1995-2012 (1998).
17.F. J. Ewing, “The Crystal Structure of Lepidocrocite,” J. Chem. Phy, 3, 420-454 (1935).
18.J. A. Kohn, G. Katz, and J. D. Broder, “β-Ga2O3 and Its Alumina Isomorph, θ-Al2O3,” Am. Miner., 42, 398-408 (1957).
19.Y. M. Chiang, D. P. Birnie, Ⅲ, and W. D. Kingery, Physical Ceramics-Principles for Ceramic Science and Engineering, Wiley, New York, 1997.
20.B. C. Lippens and J. H. de Boer, “Study of phase Transformations During Calcination of Aluminum Hydroxides by Selected Area Electron Diffraction,” Acta Crystallogr., 17, 1312-1321 (1964).
21.K. J. Morrissey, K. K. Czanderna, B. C. Carter, and R. P. Merrill, “Growth of α-Al2O3 within a Transition Alumina Matrix,” Comm. Am. Ceram. Soc., C88-C90 (1984).
22.T. C. Chou and T. G. Nieh, “Nucleation and Concurrent Anomalous Grain Growth of α-Al2O3 during γ��?Phase Transformation,” J. Am. Ceram. Soc., 74 [9] 2270-2279 (1991).
23.T. C. Chou and T. G. Nieh, “Interface-Controlled Phase Transformation and Abnormal Grain Growth of α-Al2O3 in thin γ-alumina Films,” Thin Solid Films, 221 [2] 89-97 (1992).
24.J. Ding, T. Tsuzuki, and P. G. McCormick, “Ultrafine Alumina Particles Prepared by Mechanochemical/Thermal Processing,” J. Am. Ceram. Soc., 79 [11], 2956-2958 (1996).
25. 溫惠玲,由 Boehmite 製得氧化鋁粉末的 θ��?Al2O3 相轉換,國立成功大學資源工程研究所,博士論文,中華民國 89 年 1 月。
26.H. L. Wen and F. S. Yen, ”Growth Characteristics of Boehmite-Derived Ultrafine Theta and Alpha-Alumina Particles during Phase Transformation,” J. Crys. Grow., 208, 696-708 (2000).
27.P. L. Chang, F. S. Yen, K. C. Cheng, and H. L. Wen, “Examinations on the Critical and Primary Crystallite Sizes during θ- to α- Phase Transformation of Ultrafine Alumina Powders,” Nano Letters, 1 [5], 253-261 (2001).
28.F. S.Yen, H. L. Wen, and Y. T. Hsu, “Crystallite Size Growth and the Derived Dilatometric Effect during θ- to α- Phase Transformation of Nano-Sized Alumina powders,” J. Crys. Grow., 233, 761-773 (2001).
29.楊榮澤,奈米 α-Al2O3 晶粒成長熱力學,國立成功大學資源工程研究所,博士論文,2009年1月。
30.R. J. Yang, P. C. Yu, C. C. Chen, and F. S. Yen, “Growth Thermodynamics of Nano-scaled Alpha-Alumina Crystallites,” Cryst. Growth Des., 9 [4], 1692-1697 (2009).
31.Y. K. Park, E. H. Tadd, M. Zubris, and R. Tannenbaum, “Size-Controlled Synthesis of Alumina Nanoparticles from Aluminum Alkoxides,” Mater. Res. Bull., 40, 1506-1512 (2005).
32.H. Liu, G. Ning, Z.Gan. and Y. Lin, “A Simple Procedure to Prepare Spherical α–Alumina Powders,” Mater. Res. Bull., 44, 785-788 (2009).
33.H. J. Kim, T. G. Kim, J. J. Kim, S. S. Park, S. S. Hong, and G. D. Lee, “Influencees of Precursor and Additive on the Morphology of Nanocrystalline α–Alumina,” J. Phys. Chem. Solids, 69, 1521-1524 (2008).
34.V. K. LaMer and R. H. Dinegar, “Theory, Production and Mechanism of Formation of Monodispersed Hydrosols,” J. Am. Chem. Soc., 72, 4847-4854 (1950).
35.P. Tartaj and J. Tartaj, “Preparation, Characterization and Sintering Behavior of Spherical Iron Oxide Doped Alumina Particles,” Acta Mater., 50, 5-12 (2002)
36.P. Murugavel, M. Kalaiselvam, M. K. Renganathan, and A. R. Raju, “Preparation and Characterization of Sub-Micron Spherical Particles of Al2O3, SiO2 and Mullite,” Mater. Chem. Phys., 56, 247-251 (1998).
37.M. Vallit-Regí, L. M. Rodríguez-Lorenzo, C. V. Ragel, A. J. Salinas, and J. M. González-Calbet, “Control of Structural Type and Particle Size in Alumina Synthesized by the Spray Pyrolysis Method,” Solid State Ionics, 101, 197-203 (1997)
38.T. Hirayama, “High-Temperature Characteristics of Transition Al2O3 Powder with Ultrafine Spherical Particles,” J. Am. Ceram. Soc., 70, c122-c124 (1987).
39.T. Hyodo, M. Murakami, Y. Shimizu, and M. Egashira, “Preparation of Hollow Alumina Microspheres by Microwave-Induced Plasma Pyrolysis of Atomized Precursor Solution,” J. Eur. Ceram. Soc., 25, 3563-3572 (2005).
40.P. C. Yu, R. J. Yang, Y. T. Chang, and F. S. Yen, “Fabrication of Nano-Scaled α–Alumina Crystallites through Heterogeneous Precipitation of Boehmite in a Well-Dispersed θ-Al2O3-Suspensions,” J. Am. Ceram. Soc., 90 [8] 2340-2346 (2007).
41.Y. Yang, Y. C. Wu, and P. Cui, “Preparation of Ultrafine Powders by Thermal Decomposition of AACH at Low Temperature,” Chinese J. Process. Eng., 2 [4] 325-329 (2002).
42.P. K. Sharma, M. H. Jilavi, D. Burgard, R. Nass, and H. Schmidt, “Hydrothermal Synthesis of Nanosized α–Al2O3 from Seeded Aluminum Hydroxide,” J. Am. Ceram. Soc., 81 [10] 2732-34 (1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top