Adylov, G. T., Voronov, G. V., Mansurova, E. P., Sigalov, L. M. and Urazaeva, E. M., “The Y2O3-Al2O3 system above 1473K,” Russian Journal of Inorganic Chemistry, Vol. 33, no. 7, 1998, pp.1062-1063.
Adylov, G. T., Voronov, G. V., Mansurova, E. P., Sigalov, L. M., Urazaeva, E. M. and Khtm Z. N., “High-temperature powder X-ray diffraction of yttria to melting point,” J. Inorg. Chem., Vol. 33, no. 7, 1988, pp. 1867-1869.
Bamford, C. H. and Tipper, C. F. H., Reaction in the solid-state, comprehensive chemical kinetics, Vol. 22, Else. Sci. Pub. Co., New York, 1980.
Buchanan, R. C., “Ceramic materials for electronics:processing, properties, and application.,” Marcel Dekker, Inc. New York.
Buscaglia, M. T., Bassoli, M. and Buscaglia, V., “Solid-state synthesis of ultrafine BaTiO3 powders from nanocrystalline BaCO3 and TiO2,” J. Am. Ceram. Soc., Vol.88, no. 9, 2005, pp. 2374–2379.
Gemological Institute of America, GIA Gem Reference Guide 1995, ISBN 0-87311-019-6
Glushkova, V. B., Krzhizhanovskaya, V. A., Egorova, O. N., Udalov, Y. P. and Kachalova, L. P., ”Interaction of yttrium and aluminum oxide,” Inorg. Mater. (Engl. Transl.) , Vol. 19, no. 1, 1983, pp. 95-99.
Gonzalez-Velasco, J. R., Ferret, R., Lopez-Fonseca, R. and Gutierrez-Ortiz M.A., “Influence of particle size distribution of precursor oxides on the synthesis of cordierite by solid-state reaction,” Powder technology, Vol. 153, 2005, pp. 34-42.
Gowda, G., “Synthesis of yttrium aluminate by the sol-gel process,” J. Mater. Sci. Lett., Vol. 5, 1986, pp. 1029-1032.
Hancock, J. D. and Sharp, J. H., “Method of comparing solid-state kinetic data and its application to the decomposition of Koalinite, Brucite, and BaCO3,” J. Am. Ceram. Soc., Vol. 55, No. 2, pp. 74~77.
Hay, R. S., “Phase transformation and microstructure evolution in sol-gel derived yttrium-aluminum garnet films,” J. Mater. Res., Vol. 8, 1993, pp. 578-604.
Hills, A. W. D., “Mechanism of the thermal decomposition of Calcium Carbonate,” Chem. Eng. Sci., Vol 23, No. 4, 1968, pp. 297-320.
Iida, Y., Towata, A., Tsugoshi, T. and Furukawa, M., “In situ Raman monitoring of low-temperature synthesis of YAG from different starting materials,” Vibrational Spectroscopy, Vol.19, 1999, pp. 399-405.
Ikesue, A., Kamata, K. and Yoshida, K., “Synthesis of Nd3+, Cr3+-codoped YAG ceramics for high-efficiency solid state lasers,” J. Am. Ceram. Soc., Vol. 78, 1995, pp. 2545-2547.
Kinsman, K.M., Mckittrick, J., Sluzky, E. and Hesse, K., “Phase development and luminescence in chromium-doped yttrium aluminum garnet(YAG:Cr) phosphors,” J. Am. Ceram. Soc., Vol. 77, no. 11, 1994, pp. 2866-2872.
Kniga, M. V., Mikhaleva, T. G., and Rivkin, M.N., “Interaction in the yttrium oxide-aluminum garnet films,” Russ. J. Inorg. Chem., Vol. 17, no. 6, 1972, pp. 903-905.
Li, J. G., Ikegami, T., Lee, J. H., Mori, T. and Yajima Y., “Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitant,” J. Euro. Ceram. Soc., Vol.20, 2000, pp. 2395-2405.
Lo, J. R., and Tseng, T. Y., “Phase development and activation energy of the Y2O3-Al2O3 system by a modified sol-gel progress,” Mater. Chem. Phys., Vol. 56, 1998, pp. 56-62.
Lu, C. H. and Hsu, W. T., “Sol-gel pyrolysis and photoluminescent characteristic of europium-ion doped yttrium aluminum garnet nanophosphors,” J. Euro. Ceram. Soc., Vol.24, 2004, pp. 3723-3729.
Medraj, M. and Hammond, R., “High Temperature neutron diffraction study of the Al2O3-Y2O3 system,” J. Euro. Ceram. Soc., Vol. 26, 2006, pp. 3515-3524.
Mercury, J. M. R., De Aza, A. H. and Pena, P., “Synthesis of CaAl2O4 from powders: Particle size effect,” J. Euro. Ceram. Soc., Vol. 25, 2005, pp. 3269–3279.
Neiman, A. Y., Tkachenko, E. V., Kvichko, L. A. and Kotok, L. A., “Condition and macromechanism of the solid-phase synthesis of yttrium aluminates,” Russian Journal of Inorganic Chemistry, Vol. 25, no. 9, 1980, pp. 2340-2345.
Nyman, M., Caruso, J. and Hampden-Smith, M. J., “Comparison of solid-state and spray-pyrolysis synthesis of yttrium aluminate powders,” J. Am. Ceram. Soc., Vol. 80, no. 5, 1997, pp. 1231-1238.
Ozawa, T., “Kinetic analysis of derivative curve in thermal analysis,” J. Thermal Anal., Vol.2, no. 3, 1970, pp. 301-324.
Pan, Y., Wu, M. and Su, Q., “Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphor,” Mater. Sci. Eng. B, Vol. 106, 2004, pp. 251-256.
Putnis, A., Introduction to mineral science, Cambrige University Press, 1992.
Ramanathan, S., Kakade, M. B., Roy, S. K. and Kutty K.K., “Processing and characterization of combustion synthesized YAG powders,” Ceramics International, Vol. 29, 2003, pp. 477-484.
Robertson, J. M., Van Tol, M. W., Heynen, J. P. H., Smits, W. H. and de Boer, T., “Thin single crystalline phosphor layers grown by liquid phase epitaxy,” Philips J. res, Vol. 35, no. 6, 1980, pp. 354-371.
Shimada, S., Soejima K. and Ishii T., “Influence of particle size of α-Fe2O3 on the formation of ZnFe2O4 and the implications of a characteristic surface texture of the ferrite phase formed on α-Fe2O3 particles,” Reactivity of Solids, Vol. 8, 1990, pp. 51-61.
Tsai, M. S., Fu., W. C. and Liu, G. M., “Effect of pre-aging pH on the formation of yttrium aluminum garnet powder (YAG) via the solid state reaction method,” J. Alloys Comp., Vol. 440, 2007, pp. 309-314.
Tsai, M. S., Fu., W. C., Wu, W. C., Chen, C. H. and Yang, C. C., “Effect of the aluminum source on the formation of yttrium aluminum garnet (YAG) powder via the solid state reaction,” J. Alloys Comp., Vol. 440, 2007, pp. 309-314.
Viechnicki, D. and Strakhov Y. I., “Solid-state formation of Nd : Y3Al5O12 (Nd:YAG),” Am. Ceram. Soc. Bull., Vol. 58, no. 8, 1979, pp. 790-791.
Wang, H. G., Herman, H. and Liu, X., “Activation energy for crystal growth using isothermal and continuous heating processes,” J. Mater. Sci., Vol. 25, 1990, pp. 2339-2343.
Wen, L., Sun, X., Xiu, Z., Chen, S. and Tsai, C.T., “Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics,” J. Eur. Ceram. Soc., vol. 24, 2000, pp. 2681-2688.
Yamaguchi, K., Takeoka, K., Herota, K. and Hayashida, A., “Formation of alkoxy-derived yttrium aluminum oxides,” J. Mater. Sci., Vol. 27, 1992, pp. 1261-1264.
Yanagawa, R. and Senna, M., “Preparation of 200 nm BaTiO3 Particles with their tetragonality 1.010 via a solid-state reaction preceded by agglomeration-free mechanical activation,” J. Am. Ceram. Soc., Vol. 90, no.3, 2007, pp. 809–814.
Yoder, H. S. and Keith, M. L., “Complete substitution of aluminium for solicon: The system 3MnO•Al2O3•3SiO2-3Y2O3•5Al2O3,” Am. Mineralogist, Vol. 36, no 7, 1951, pp. 519-533.
Zhukovskaya, A. E. and Strakhov, V. I., “Influence of the molar ratio pf Y2O3 to Al2O3 on the kinetics of synthesis of yttrium aluminates,” Prikadnoi Khimii, Vol. 48, 1975, pp. 1125-1127.
石明哲,晶種對YAG粉末之生成影響研究,國立成功大學資源工程系碩士論文,中華民國94年。張俊龍,奈米級氧化鋁粉末θ→α-Al2O3相轉換活化能研究,國立成功大學資源工程學系碩士論文,中華民國91年。賴佳芸,氧化釔粉末粒徑對YAG生成活化能之影響,國立成功大學資源工程學系碩士論文,中華民國97年。