跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/01 02:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡振宏
研究生(外文):Zhen-hung Tsai
論文名稱:原料粒徑比對固態反應合成YAG的影響
論文名稱(外文):Effect of size ratio of raw materials on YAG synthesis by solid state reaction
指導教授:顏富士顏富士引用關係
指導教授(外文):Fu-Su Yen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:69
中文關鍵詞:釔鋁石榴石活化能固態反應法粒徑
外文關鍵詞:YAGsizeactivation energysolid state reaction
相關次數:
  • 被引用被引用:2
  • 點閱點閱:170
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  以氧化釔 (Y2O3) 與氧化鋁 (α-Al2O3) 為原料,利用固態反應法製備釔鋁石榴石 ( Y3Al5O12,以下簡稱YAG) 的反應過程,是由Al成分擴散進入Y2O3結構中,因此反應擴散距離乃由Y2O3粒徑決定。以往由於使用尺寸較大的微米級原料,反應受限於成分擴散距離,使得煅燒溫度需至1600℃以上才可合成單相YAG。一般降低反應物之粒徑,可使反應物接觸點變多,並縮短成分擴散距離,加速合成反應。本研究改變Y2O3及α-Al2O3原料粉末粒徑,觀察粒徑比(dY/dAl)對YAG的合成過程與生成活化能之影響,並探討二者粒徑改變之相對重要性。實驗分為兩組,(A) 改變α-Al2O3粒徑:使用d50粒徑0.2 (AS)、0.35 (AM) 及0.75 μm (AL) 之α-Al2O3,分別與d50為0.07 μm之Y2O3 (YS) 混合,獲得YSAS、YSAM及YSAL起始粉末;(B) 改變Y2O3粒徑:使用d50粒徑0.07 (YS)、0.4 (YM) 及2 μm (YL) 之Y2O3,分別與0.2 μm之α-Al2O3 (AS)混合,獲得YSAS、YMAS及YLAS起始粉末,其中YSAS為兩組共用,因此共有5種不同粒徑比的YAG計量起始粉末。再對各YAG計量起始粉施以熱處理,並將熱處理的樣品進行後續的實驗分析。研究結果顯示:(1) 實驗(A)中,隨α-Al2O3粒徑變大,反應物接觸點減少,反應速率較慢,使得YAM於開始生成的溫度下生成量較少,中間相達到最大生成量與消失溫度升高,且反應溫度區間或時間拉長,合成的YAG粒徑亦較不均勻,粒徑比變化對擴散距離影響不大,三樣品擴散距離接近,使得各釔鋁結晶相生成溫度及合成單相YAG溫度接近。由n値可知YAG皆為擴散控制機制,因擴散距離微增,YAG生成活化能亦漸增,三樣品各為343、393及510 kJ/mol,但增加幅度不大。(2) 實驗(B)中,隨Y2O3粒徑變大,反應物接觸點減少,使得反應速率較慢,可觀察到與 (A)相同之現象。不同的是其粒徑比變化對擴散距離影響較大,隨Y2O3粒徑變大,合成YAG所需溫度提高,YAG生成仍為擴散控制機制,但YAG生成活化能增加幅度較實驗(A)大,由343增加至547 kJ/mol,且YLAS樣品仍無法完全反應生成YAG。因此,本研究認為欲在低溫得到單相YAG,降低Y2O3粒徑較降低α-Al2O3粒徑有效。
  Al composition diffuses into the Y2O3 structure in the reaction process of YAG synthesis which using the Y2O3 and α-Al2O3 powders as raw materials by solid state reaction. The reaction is limited to the diffusion distance while using the micro-scaled raw materials. Thus, temperatures for synthesizing single phase YAG must reach above 1600oC. In general, size reduction of raw materials could increase contact points among reactants and decrease the diffusion distance by which the reaction would be accelerated. In this study, the size ratio (dY/dAl) effect on YAG synthesis process and formation activation energy were observed by changing sizes of Y2O3 and α-Al2O3 respectively. The relative importance of these two components also discussed. Experiments divided into two parts. The part (A) for changing the size of α-Al2O3 used α-Al2O3 of 0.2μm (AS), 0.35μm (AM), and 0.75μm (AL) to mix with Y2O3 of 0.07μm (YS) ,and noted starting powders as YSAS, YSAM, and YSAL respectively. The part (B) for changing the size of Y2O3 used Y2O3 of 0.07μm (YS), 0.4μm (YM), and 2μm (YL) to mix with α-Al2O3 of 0.2μm (AS), then noted starting powders as YSAS, YMAS, and YLAS, respectively. Thus, there were 5 kinds starting powders with different size ratios.
  Results in the part (A) showed that contact points of reactants reduced as the size of α-Al2O3 became larger, and the reaction rate become slower. That resulted in the production of YAM phase became fewer at beginning, the maximum yield and disappeared temperatures for YAM and YAP shifted to higher ones, and various sizes of YAG powders because of the prolonged reaction time and extensive reaction temperatures. Furthermore, temperatures for onset of each Y-Al crystal phase and for the single phase of YAG got closer when three samples were compared. YAG formation mechanism all represented a diffusion-controlled one in this part. Since the diffusion distance was not apparently affected by the increasing size of α-Al2O3, activation energies with slight increased values of 343, 393, and 510 kJ/mol were obtained for three samples.
Results in the part (B) showed that the contact points of reactants reduced when the size of Y2O3 became larger, and the reaction rate become slower. It was the same as part (A), but the varied size ratio affected the diffusion distance of reaction. When the diffusion distance increased to micrometer scale, temperatures for synthesizing YAG increased dramatically. The mechanism of YAG formation was still the diffusion-controlled, but the increment of activation energy was more distinct than that in part (A). The activation energy increased from 343 to 547 kJ/mol. The reaction even could not be completed in YLAS sample. Therefore, this study demonstrated that it would be more effective to synthesize pure YAG at low temperatures when decreased the size of Y2O3 than that of α-Al2O3.
摘要 I
Abstract II
致謝 IV
圖目錄 VII
表目錄 VIII
一、緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究目的 3
二、理論基礎與前人研究 4
2.1 釔鋁石榴石(YAG) 4
2.1.1 YAG晶體結構 4
2.1.2 Y2O3-Al2O3二成份系統 4
2.1.3 固態反應合成YAG的反應過程 7
2.2 YAG的合成方法 9
2.2.1 固態反應法 9
2.2.2 濕式化學法 9
2.2.3 合成法特性比較 10
2.3 原料粒徑對多成份系統合成反應的影響 12
2.4 動力學 13
2.4.1 相轉換反應速率式 13
2.4.2 Arrhenius方程式 14
2.4.3 YAG動力學文獻 15
2.4.4 粒徑如何影響反應動力學 16
三、研究方法與步驟 19
3.1 實驗操作 19
3.1.1 實驗原料 19
3.1.2 實驗設計 19
3.1.3 實驗流程 20
3.2 特性分析 27
3.2.1 粒徑分布量測 27
3.2.2 顯微結構分析 27
3.2.3 熱差分析 27
3.2.4 粉末結晶相分析 27
3.2.5 各結晶相生成量之定量分析 28
四、結果與討論 30
4.1 由DTA比較原料粒徑比改變對合成的影響 30
4.1.1 YAG合成過程之反應放熱峰分析 30
4.1.2 DTA熱差分析比較 31
4.2 由XRD結晶相分析比較原料粒徑比改變對合成的影響 34
4.2.1 不同溫度相同持溫時間之結晶相變化 34
4.2.2 相同溫度不同持溫時間之結晶相變化 35
4.3 由YAG生成動力學參數比較原料粒徑比改變對合成的影響 42
4.4 YAG顯微結構觀察 50
五、結論 53
參考文獻 54
附錄 57
Adylov, G. T., Voronov, G. V., Mansurova, E. P., Sigalov, L. M. and Urazaeva, E. M., “The Y2O3-Al2O3 system above 1473K,” Russian Journal of Inorganic Chemistry, Vol. 33, no. 7, 1998, pp.1062-1063.
Adylov, G. T., Voronov, G. V., Mansurova, E. P., Sigalov, L. M., Urazaeva, E. M. and Khtm Z. N., “High-temperature powder X-ray diffraction of yttria to melting point,” J. Inorg. Chem., Vol. 33, no. 7, 1988, pp. 1867-1869.
Bamford, C. H. and Tipper, C. F. H., Reaction in the solid-state, comprehensive chemical kinetics, Vol. 22, Else. Sci. Pub. Co., New York, 1980.
Buchanan, R. C., “Ceramic materials for electronics:processing, properties, and application.,” Marcel Dekker, Inc. New York.
Buscaglia, M. T., Bassoli, M. and Buscaglia, V., “Solid-state synthesis of ultrafine BaTiO3 powders from nanocrystalline BaCO3 and TiO2,” J. Am. Ceram. Soc., Vol.88, no. 9, 2005, pp. 2374–2379.
Gemological Institute of America, GIA Gem Reference Guide 1995, ISBN 0-87311-019-6
Glushkova, V. B., Krzhizhanovskaya, V. A., Egorova, O. N., Udalov, Y. P. and Kachalova, L. P., ”Interaction of yttrium and aluminum oxide,” Inorg. Mater. (Engl. Transl.) , Vol. 19, no. 1, 1983, pp. 95-99.
Gonzalez-Velasco, J. R., Ferret, R., Lopez-Fonseca, R. and Gutierrez-Ortiz M.A., “Influence of particle size distribution of precursor oxides on the synthesis of cordierite by solid-state reaction,” Powder technology, Vol. 153, 2005, pp. 34-42.
Gowda, G., “Synthesis of yttrium aluminate by the sol-gel process,” J. Mater. Sci. Lett., Vol. 5, 1986, pp. 1029-1032.
Hancock, J. D. and Sharp, J. H., “Method of comparing solid-state kinetic data and its application to the decomposition of Koalinite, Brucite, and BaCO3,” J. Am. Ceram. Soc., Vol. 55, No. 2, pp. 74~77.
Hay, R. S., “Phase transformation and microstructure evolution in sol-gel derived yttrium-aluminum garnet films,” J. Mater. Res., Vol. 8, 1993, pp. 578-604.
Hills, A. W. D., “Mechanism of the thermal decomposition of Calcium Carbonate,” Chem. Eng. Sci., Vol 23, No. 4, 1968, pp. 297-320.
Iida, Y., Towata, A., Tsugoshi, T. and Furukawa, M., “In situ Raman monitoring of low-temperature synthesis of YAG from different starting materials,” Vibrational Spectroscopy, Vol.19, 1999, pp. 399-405.
Ikesue, A., Kamata, K. and Yoshida, K., “Synthesis of Nd3+, Cr3+-codoped YAG ceramics for high-efficiency solid state lasers,” J. Am. Ceram. Soc., Vol. 78, 1995, pp. 2545-2547.
Kinsman, K.M., Mckittrick, J., Sluzky, E. and Hesse, K., “Phase development and luminescence in chromium-doped yttrium aluminum garnet(YAG:Cr) phosphors,” J. Am. Ceram. Soc., Vol. 77, no. 11, 1994, pp. 2866-2872.
Kniga, M. V., Mikhaleva, T. G., and Rivkin, M.N., “Interaction in the yttrium oxide-aluminum garnet films,” Russ. J. Inorg. Chem., Vol. 17, no. 6, 1972, pp. 903-905.
Li, J. G., Ikegami, T., Lee, J. H., Mori, T. and Yajima Y., “Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitant,” J. Euro. Ceram. Soc., Vol.20, 2000, pp. 2395-2405.
Lo, J. R., and Tseng, T. Y., “Phase development and activation energy of the Y2O3-Al2O3 system by a modified sol-gel progress,” Mater. Chem. Phys., Vol. 56, 1998, pp. 56-62.
Lu, C. H. and Hsu, W. T., “Sol-gel pyrolysis and photoluminescent characteristic of europium-ion doped yttrium aluminum garnet nanophosphors,” J. Euro. Ceram. Soc., Vol.24, 2004, pp. 3723-3729.
Medraj, M. and Hammond, R., “High Temperature neutron diffraction study of the Al2O3-Y2O3 system,” J. Euro. Ceram. Soc., Vol. 26, 2006, pp. 3515-3524.
Mercury, J. M. R., De Aza, A. H. and Pena, P., “Synthesis of CaAl2O4 from powders: Particle size effect,” J. Euro. Ceram. Soc., Vol. 25, 2005, pp. 3269–3279.
Neiman, A. Y., Tkachenko, E. V., Kvichko, L. A. and Kotok, L. A., “Condition and macromechanism of the solid-phase synthesis of yttrium aluminates,” Russian Journal of Inorganic Chemistry, Vol. 25, no. 9, 1980, pp. 2340-2345.
Nyman, M., Caruso, J. and Hampden-Smith, M. J., “Comparison of solid-state and spray-pyrolysis synthesis of yttrium aluminate powders,” J. Am. Ceram. Soc., Vol. 80, no. 5, 1997, pp. 1231-1238.
Ozawa, T., “Kinetic analysis of derivative curve in thermal analysis,” J. Thermal Anal., Vol.2, no. 3, 1970, pp. 301-324.
Pan, Y., Wu, M. and Su, Q., “Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphor,” Mater. Sci. Eng. B, Vol. 106, 2004, pp. 251-256.
Putnis, A., Introduction to mineral science, Cambrige University Press, 1992.
Ramanathan, S., Kakade, M. B., Roy, S. K. and Kutty K.K., “Processing and characterization of combustion synthesized YAG powders,” Ceramics International, Vol. 29, 2003, pp. 477-484.
Robertson, J. M., Van Tol, M. W., Heynen, J. P. H., Smits, W. H. and de Boer, T., “Thin single crystalline phosphor layers grown by liquid phase epitaxy,” Philips J. res, Vol. 35, no. 6, 1980, pp. 354-371.

Shimada, S., Soejima K. and Ishii T., “Influence of particle size of α-Fe2O3 on the formation of ZnFe2O4 and the implications of a characteristic surface texture of the ferrite phase formed on α-Fe2O3 particles,” Reactivity of Solids, Vol. 8, 1990, pp. 51-61.
Tsai, M. S., Fu., W. C. and Liu, G. M., “Effect of pre-aging pH on the formation of yttrium aluminum garnet powder (YAG) via the solid state reaction method,” J. Alloys Comp., Vol. 440, 2007, pp. 309-314.
Tsai, M. S., Fu., W. C., Wu, W. C., Chen, C. H. and Yang, C. C., “Effect of the aluminum source on the formation of yttrium aluminum garnet (YAG) powder via the solid state reaction,” J. Alloys Comp., Vol. 440, 2007, pp. 309-314.
Viechnicki, D. and Strakhov Y. I., “Solid-state formation of Nd : Y3Al5O12 (Nd:YAG),” Am. Ceram. Soc. Bull., Vol. 58, no. 8, 1979, pp. 790-791.
Wang, H. G., Herman, H. and Liu, X., “Activation energy for crystal growth using isothermal and continuous heating processes,” J. Mater. Sci., Vol. 25, 1990, pp. 2339-2343.
Wen, L., Sun, X., Xiu, Z., Chen, S. and Tsai, C.T., “Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics,” J. Eur. Ceram. Soc., vol. 24, 2000, pp. 2681-2688.
Yamaguchi, K., Takeoka, K., Herota, K. and Hayashida, A., “Formation of alkoxy-derived yttrium aluminum oxides,” J. Mater. Sci., Vol. 27, 1992, pp. 1261-1264.
Yanagawa, R. and Senna, M., “Preparation of 200 nm BaTiO3 Particles with their tetragonality 1.010 via a solid-state reaction preceded by agglomeration-free mechanical activation,” J. Am. Ceram. Soc., Vol. 90, no.3, 2007, pp. 809–814.
Yoder, H. S. and Keith, M. L., “Complete substitution of aluminium for solicon: The system 3MnO•Al2O3•3SiO2-3Y2O3•5Al2O3,” Am. Mineralogist, Vol. 36, no 7, 1951, pp. 519-533.
Zhukovskaya, A. E. and Strakhov, V. I., “Influence of the molar ratio pf Y2O3 to Al2O3 on the kinetics of synthesis of yttrium aluminates,” Prikadnoi Khimii, Vol. 48, 1975, pp. 1125-1127.
石明哲,晶種對YAG粉末之生成影響研究,國立成功大學資源工程系碩士論文,中華民國94年。
張俊龍,奈米級氧化鋁粉末θ→α-Al2O3相轉換活化能研究,國立成功大學資源工程學系碩士論文,中華民國91年。
賴佳芸,氧化釔粉末粒徑對YAG生成活化能之影響,國立成功大學資源工程學系碩士論文,中華民國97年。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top