跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 16:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊昆原
研究生(外文):Kun-yuan Yang
論文名稱:X-Al2O3微粒表面結構與CO2吸附
論文名稱(外文):Surface Microstructure and CO2 Adsorptionof X-Al2O3 Crystallite Powders.
指導教授:顏富士顏富士引用關係
指導教授(外文):Fu-Su Yen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:77
中文關鍵詞:吸附氧化鋁二氧化碳高比表面積
外文關鍵詞:CO2Al2O3high surface areaadsorption
相關次數:
  • 被引用被引用:2
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於CO2所造成的溫室效應與日遽增,使得地球平均溫度不斷得升高,造成冰山融化、海平面上升及全球氣候變遷等問題。因此,研究如何做到CO2減量的技術便開始在世界各國受到重視。捕獲CO2為此技術之重要環節,其中以吸附法最常被使用,而所使用的吸附材多以有孔隙的高比表面積材料為主。
由三水鋁石 (Gibbsite) 經熱處理得到的過渡相 χ- Al2O3為一具有微孔的片狀微晶粒體,是一種具有高比表面積及高孔洞體積 (S.S.A.: 260 m2/g,Pore size: 3.1 nm,Pore volume: 0.25 cm3/g) 的多孔天然型材料,極有作為CO2吸附材的可能。
本研究主要觀察 χ-Al2O3片體上出現的孔洞之結構與其二氧化碳吸附能力間的關係。研究先以三種特定熱處理條件對Gibbsite粉末進行煆燒,獲得三種不同孔洞分佈的X520、X560及X600之 χ-Al2O3粉末,再透過TGA量測各樣品之CO2吸附量。另以三同距片體剝離機對三種 χ-Al2O3粉進行不同時間的剝片處理,利用TEM觀察剝片程度,並對剝層後之粉體進行孔洞分析及CO2吸附量量測。研究結果顯示:
1. χ-Al2O3粉末基本上具有吸附CO2的能力,與文獻中報導之Al2O3吸附材比較,因其不具額外添加元素且未經表面改質,故吸附能力略低。
2. 經剝片處理後之 χ-Al2O3,其CO2吸附量有隨著20~90 nm孔洞體積的增加而上升的趨勢,可使CO2吸附量有隨著剝片後的孔洞體積增加而提升50∼80 %。
3. χ-Al2O3經剝片處理後,發生兩項改變。1.使疊層片體體內的孔洞因層體分開而易於接近。2.使組成片體上的微晶發生位移,改變大小孔洞的體積量比例。
The greenhouse effect caused by CO2 has been getting acute, and it has caused earth's average temperature to elevate. So some problems, like icebergs melts, sea level rises, global climate changes and so on, were emerged. Therefore, researchers from all over the world devote their attention to develop the techniques of the reduction in CO2. Among many of the techniques, CO2 capture technique plays a very important role and adsorption method is one of the most used techniques in a variety of techniques. In general, the materials used for adsorbent are characterized by pore structure and high surface area.
χ-Al2O3 crystallites prepared by the calcination of gibbsite (Al(OH)3) are characterized by plate-like shape and porous structure. It is a natural porous material with high surface area and pore volume (S.S.A.: 260 m2/g,Pore size: 3.1 nm,Pore volume: 0.25 cm3/g). Therefore, it has potential to be an absorbent of CO2.
In this study, the relationship between the pore structure of χ-Al2O3 and CO2 adsorption capacity was examined. Three kinds of χ-Al2O3 powders with different pore size distributions (designated as X520, X560, and X600) were prepared by calcining gibbsite under different thermal treatment conditions. The CO2 adsorption capacity was examined by TGA. Moreover, the three χ-Al2O3 powders were delaminated by tri-equal distance bead driver for various durations. The morphology of the delaminated samples was examined by TEM technique. The pore size distribution and CO2 adsorption capacity were examined by N2-adsorption and TGA techniques, respectively. The results showed that:
1. χ-Al2O3 has the capability of CO2 adsorption basically. However, compared with the adsorption capacity of other alumina materials reported in the references, it is lower than them. The reason may be that there were no additional elements and surface modification of the χ-Al2O3.
2. The CO2 adsorption capacity of the delaminated χ-Al2O3 powders increases with the pore volume (pore size: 20~90 nm) increases. The CO2 adsorption capacity had been promoted 50∼80 % with increasing pore volumes by measuring the CO2 adsorption capacity.
3. After delaminated χ-Al2O3 powders, there were two changes happened.1.The pores in the layered plate-like particles had been accessible easy because the layered plate-like particles had been separated.2.The displacement of crystallites which plate-like particles composed had made the ratio of big and small pore volume changed.
摘要...................................................I
Abstract.............................................. II
致謝...................................................IV
表目錄.................................................VII
圖目錄................................................VIII
第一章 緒論..............................................1
1.1 前言.................................................1
1.2 研究動機.............................................3
1.3 研究目的.............................................3
第二章 理論基礎與前人研究................................6
2.1 吸附原理.............................................6
2.1.1 物理吸附...........................................6
2.1.2 化學吸附...........................................6
2.2 等溫吸附曲線與孔洞分析...............................9
2.3 CO2 特性............................................16
2.4 影響CO2吸附的原因與相關技術.........................16
2.5 Gibbsite及其過渡相 X-Al2O3..........................20
2.5.1 Gibbsite結構......................................20
2.5.2 Gibbsite X-Al2O3 的相轉換.........................20
2.5.3 χ-Al2O3...........................................23
第三章 實驗方法及步驟...................................25
3.1 實驗構想與設計......................................25
3.2 χ-Al2O3製備.........................................25
3.3 χ-Al2O3剝層實驗.....................................29
3.4 特性分析............................................29
3.4.1 粉末結晶相分析....................................29
3.4.2 粉末半峰寬量測及晶徑分析與計算....................29
3.4.3 孔洞分佈測定與BET比表面積.........................30
3.4.4 CO2吸附量量測.....................................32
3.4.5 顯微結構分析......................................33
第四章 結果與討論.......................................34
4.1 �茛q-Al2O3起始特性...................................34
4.1.1 粉末結晶相........................................34
4.1.2 起始 χ-Al2O3顯微結構..............................34
4.1.3 粉末比表面積......................................37
4.1.4 起始 χ-Al2O3孔洞分佈..............................37
4.1.5 起始 χ-Al2O3氮氣吸附曲線圖........................37
4.2 起始 χ-Al2O3之CO2恆溫吸附量.......................43
4.3 剝片處理後之 χ-Al2O3特性............................46
4.3.1 剝片處理後之 χ-Al2O3粉末結晶相....................46
4.3.2 剝片處理後之 χ-Al2O3顯微結構......................46
4.3.3 剝片處理後之 χ-Al2O3粉末比表面積..................46
4.3.4 剝片處理後之 χ-Al2O3孔洞分佈......................52
4.3.5 剝片處理後之 χ-Al2O3氮氣吸附曲線圖................52
4.4 剝片後 χ-Al2O3之CO2恆溫吸附量.......................56
4.5 綜合討論............................................56
第五章 結論.............................................62
參考文獻................................................63
附錄....................................................69
1. 黃啟峰,胡文正,“我國能源有關CO2排放趨勢與分析”,工研院能環所,2007年6月。
2. 鄭旭翔,談駿嵩,“二氧化碳捕獲及再利用技術”,碳經濟,9,50-62。
3. T. R. Gaffney, T. C. Golden, S. G. Mayorga, J. R. Brzozowski, and F. W. Talyer, “Carbon dioxide pressure swing adsorption process using modified alumina adsorbents,” U.S. Patents 5917136 (1999).
4. Z. Yong, V. Mata, and A. E. Rodrigues, “Adsorption of carbon dioxide at hight temperature-a review,” Separation and Purification Technology, 26, 195-205 (2002).
5. J. A. Delgado, J. L. Sotelo, J. M. Gomez, and P. Gomez, “Estimation of adsorption parameters from temperature-programmed desorption thermograms: Application to the adsorption of carbon dioxide onto Alumina,” Adsorption Science & Techniquology, 3/4 [25], 113-127 (2007).
6. I. N. Bhattacharya, S. C. Das, P. S. Mukherjee, S. Paul, and K. Mitra,“Thermal decomposition of precipitated fine aluminium trihydroxide,” Scandinavlan Journal of Metallurgy, 33, 211-219 (2004).
7. Y. W. Chen, H. Ying, and W. F. Lin, “Basicities of alumina-supported alkaline earth metal oxides,” Reaction Kinetics and Catalysis Letters, [65] 1, 83-86 (1998).
8. T. Seki and M. Onaka, “Elucidation of basic properties of mesoporous alumina through the temperature-programed desorption of carbon dioxide and heterogeneous basic catalysis of mesoporous alumina for the Knoevenagel reaction in supercritical CO2,” Journal of Molecular Catalysis A:Chemical, 263, 115-120 (2007).
9. N. A. Pechimutthu, K. K. Pant,S. C. Dhingra, and
R.Bhalla,“Characterization and and activity of K,CeCO2 and Mn promoted Ni/Al2O3 catalysts for carbon dioxide of methane,” Industrial & Engineering Chemistry Research, 45, 7435-7443 (2006).
10. O. Dewaele and G. F. Forment, “ TAP study of the sorption of CO and CO2 γ-Al2O3,” Applied Catalysis A: General, 185, 203-210 (1999).
11. V. A. Ivanov, A. Pieplu, J. C. Lavalley, and P. Nortier, “Effect of sodium oxide on the morphology and basicity of alumina,” Applied Catalysis A:Genera, 131, 323-334 (1995).
12. J. B. Peri, “ Infrared study of adsorption of carbon dioxide, hydrogen chloride, and other molecules on acid sites on dry silica-alumina and γ-Alumina,” Journal of Physical Chemistry, 10 [70], 3168-3179 (1966).
13. N. D. Parkyns, “The surface properties of metal oxides. Part II. An infrared study of the adsorption of carbon dioxide on gamma-alumina,” Journal of the Chemical Society A,410-417 (1969).
14. H. Zou, X. Ge, and J. Shen, “Surface acidity and basicity of γ-Al2O3 doped with K+ and La3+ and calcined at elevated temperatures,” Thermochimica Acta, 397, 81-86 (2003).
15. Z. Yong, V. Mata, and A. E. Rodrigues, “Adsorption of carbon dioxide on basic alumina at high temperatures,” Journal of Chemical and Engineering Data, 45, 1093-1095 (2000).
16. S. J. Gregg and D. F. Ramsay, “A study of the adsorption of carbon dioxide by alumina using infrared and isotherm measurements,” Journal of Physical Chemistry, 5 [73], 1243-1247 (1969).
17. D. H. Lee and R. A. C. Sr, “An FTIR spectral investigation of structural species found on alumina surfaces,”Materials Letters, 23, 241-246 (1995).
18. Golden et al., “Base treated alumina in pressure swing adsorption,” U.S. Patents 5656064 (1999).
19. X. Li and W. S. Ahn,“Adsorption of carbon dioxide on mesoporous alumina.”
20. Erbil , Surface Chemistry of Soild and Liquid Interfaces , Wiley-Blackwell (2006).
21. S. Lowell, J. E. Shields , M. A. Thomas, and M. Thommes, Characterization of Porous Solids And Powders : Surface Area, Pore Size and Density, Kluwer Academic, London (2004).
22. J. B. Condon, Surface Area and Porosity Determinations by Physisorption Maesurements and Theory,Harriman, USA (2006)
23. K. S. W. Sing, D. H. Everett, R. A. W. Hual, L. Moscou, R. A. Pierotti, J. Rouquerol, and T. Siemieniewska,“Reporting physisorption data for gas/solid systems with special reference to the determination of surface area
and porosity,”Pure and Applied Chemistry, 4 [57], 603-619 (1985).
24. A. V. Neimark, P. I. Ravikovitch, and A. Vishnyakov,“Bridging scales form molecular simulateions to classical thermodynamics: density functional theory of capillary condensateion in nanopores,”Journal of Physics:Condensed Matter, 15, 347-365 (2003).
25. S. J. Gregg and K. S. W. Sing, Adsorption, Surface Area and Porosity, A Subsidiary Of Harcourt Brace Jovanovich, 2th Ed, New York, (1982) 25
26. K. Tanabe, M. Misono, Y. Ono, and H. Hattori, New Solid Acids and Bases, ELSEVIER ,Tokyo (1989)
27.黃榮茂,王禹文,林聖富,楊得仁,“化學化工百科辭典”曉園出版社,中華民國78年1月。
28. C. Knofel and J. Descarpentries, “Functionalised micro-/mesoporus silica for the adsorption of carbon dioxide,” Microporous and Mesoporous Materials, 99, 79-85 (2007).
29. N. Hiyoshi, K. Yogo, and T. Yashima, “Adsorption characteristics of CO2 on organically functionalized SBA-15,” Microporous and Mesoporous Materials, 84, 357-365 (2005).
30. H.K. Song, K. W. Cho, and K.H. Lee, “Adsorption of CO2 on the chemically modified silica adsorbents,” Jouenal of Non-Crystalline Solids, 242, 69-80 (1998).
31. A. A. Fomkin, N. I. Regent, and V. A. Sinitsyn,“Adsorption deformation in the microporous carbon adsorbent-benzene system and porous structure of adsorbents,”Russian Chemical Bulletin, 6 [49], 1012-1016 (2000).
32. V. R. Palkar, “Sol-Gel derived nanostructured γ-Al2O3 porous speres as an adsorbent in liquid chromatography,” NanoStructured Materials, 3 [11],369-374 (1999).
33. R. Ghezini, M. Sassi, and Bengueddach, “Adsorption of carbon dioxide at high pressure over H-ZSM-5 type zeolite.Micropore volume determineations by using the Dubinin-Raduskevich equation and the t-polt method ,” Microporous and Mesoporous Materials, 113, 370-377 (2008).
34. A. Gil and L. M. Gandia, “Microstructure and quantitative estimation of the micropore-size dustribution of alumina –pillared clay from N2 adsorption at 77K and CO2 adsorption at 273K,” Chemical Engineering Science, 58,
3059-3075 (2003).
35. A. Macario, A. Katovic, G. Giordano, F. Iucolano, and D. Caputo, “Synthesis of mesoporous materials for carbon dioxide sequestration,” Microporous and Mesoporous Materials, 81, 139-147 (2005).
36. Z. Zhao, X. Cui, J. Ma, and R. Li, “Adsorption of caarbon dioxide on alkai-modified zeolite 13X adsorbents,” International Journal Of Greenhouse Gas Control I, 355-359 (2007).
37. 黃啟祥、林江財,陶瓷技術手冊(下),P.6837,中華民國產業發展協進會,與中華民國粉末冶金協會出版。中華民國83年7月。
38. K. Wefers and G. M. Bell, Oxides and Hydroxides of Aluminum, Alcoa Research Lab., Technical paper No.19.Alcoa Research Laboratories (1972).
39. K. Wefers, “Nomenclature, preparation, and properties of aluminum oxides, oxide hydroxides, and trihydroxides,” in Alumina Chemicals, L. D. Hart Ed., Am. Ceram. Soc., Ohio (1990).
40. B. Clippens and J. J. Steggerda, “Active Alumina,” in Physical and Chemical Aspects of Adsorbents and Catalysts, B. GLinsen Ed., Academic Press, New York, 171 (1970).
41. J. Rouquerol, F. Rouquerol, and M. Ganteaume, “Thermal decomposition of Gibbsite under low pressures I.Formation of the Boehmitic phase,” Journal of Catalysis, 36, 99-110 (1975).
42. 張沛翎,粉體粒徑對gibbsite至α-Al2O3相轉換的影響,國立成功大學資源工程研究所,博士論文,中華民國97年7月。
43. J. H. de Boer, J. M. H. Fortuin, and J. J. Steggerda, “The Dehydration of Alumina Hydrates,” Proc. Kon. Ned. Akad. Werensch., Amsterdam, B57, 170-180 (1954).
44. R. Tertian and D. Papée, “Thermal and hydrothermal transformations of alumina,” Journal of Chemical Physics and Physical Chemistry, 55, 341-353 (1958).
45. H. C. Stumpf, A. S. Russel, J. W. Newsome, and C. M. Tucker, “Thermal transformations of aluminas and alumina hydrates,” Industrial&Engineering Chemistry, 42, 1398-1403 (1950).
46. H. Saalfeld, “The structure of Gibbsite and the intermediate products of its dehydration,” Neues Jahrbuch Fur Mineralogie-Abhandlungen, 95, 1-87 (1960).
47. G. W. Brindley and J. O. Choe, “The reaction series, Gibbsite→Chi Alumina→Kappa Alumina→Corundum,” The American Mineralogist, 46, 1187-1190 (1961).
48. O. Mekasuwandumrong, V. Pavarajarn, M. Inoue, and P. Praserthdam,“Preparation and phase transformation behaveior of χ-Alumina via solvothermal synthesis,”Materials Chemistry and Physics, 100, 445-450 (2006).
49. K. I. Jutharat, P. Piyasan, P. Joongjai, and M. Okorn,“Dehydration of methanol to dimethyl ether over nanocrystalline Al2O3 with mixed γ- and χ- crystalline phases,”Catalysis Communications, 9, 1955-1958 (2008).
50. C. Meephoka, C. Chaisuk, P. Sampparnpiboon, and P. Praserthdam,“Effect of phase composition between nano γ- and χ-Al2O3 on Pt/χ-Al2O3 catalyst in CO oxidation,”Catalysis Communications, 9, 546-550 (2008).
51. S. D. Lambert and N. J. D. Grah,“Removal of non-specific dissolved organic matter from upland potable water supplies-I. Adsorption,”Water Research , 10 [29], 2421-2426 (1995).
52. S.D. Vaidya and N.V. Thakkar,“Effect of temperature, pH and ageing time on hydration of rho alumina by studying phase composition and surface properties of transition alumina obtained after thermal dehydration,”Materials Letters, 51, 295-300 (2001).
53. E. P. Barrett, L. G. Joyner, and P. P. Halenda,“The determination of pore volume and area distributions in porous substances,”Journal of the American Chemical Society, 73, 373-380 (1951).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top