跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 08:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林幸慧
研究生(外文):Hsing-huei Lin
論文名稱:以聚丙烯酸銨分散之次微米氧化鋁粉末的流變、注漿成形及燒結行為
論文名稱(外文):Rheology, slip casting, and sintering behavior of submicron alumina powders dispersed with ammonium polyacrylate
指導教授:黃啟原黃啟原引用關係
指導教授(外文):Chi-yuen Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:108
中文關鍵詞:注漿成形分散氧化鋁
外文關鍵詞:aluminadispersionslip casting
相關次數:
  • 被引用被引用:10
  • 點閱點閱:503
  • 評分評分:
  • 下載下載:140
  • 收藏至我的研究室書目清單書目收藏:0
  氧化鋁陶瓷體的性質與製程條件密切相關,對膠體成形而言,起始漿料的製備是一項關鍵的技術。本研究藉由調配不同的漿料配方,包含分散劑含量、固含量的改變及不同的 pH調整方式,探討其對漿料的分散行為、注漿成形過程及常壓下燒結行為的影響。
  在漿料特性方面,研究結果發現分散劑於顆粒表面覆蓋率達 75% (假設分散劑達飽和吸附之表面覆蓋率為 100%) 即可有效降低黏度,而適量的未吸附分散劑可有助於生坯的成形,本研究選定最佳分散劑含量為 1 wt%,此時漿料黏度低、分散劑吸附達飽和且擁有最高的生坯密度。另一方面,分散劑 PAA-NH4於氧化鋁顆粒表面之吸附有部分的化學鍵結,但化學作用力並不是高分子與顆粒間的主要吸附機制,大部分可能是由靜電力及凡得瓦爾作用力所貢獻,因此會隨著 pH的調整而發生吸附或脫附。
  在生坯成形及燒結行為方面,固含量較高的漿料經注漿成形而得之生坯,燒結收縮的溫度範圍較廣但擁有較低之燒結溫度,推測其生坯的平均孔隙尺寸較小但分佈較廣。用於注漿成形之漿料固含量有一最適區間,在此研究中,固含量為30 vol%及分散劑含量為 1 wt%之樣品於燒結條件 1400oC,持溫4 h可得到最高的相對密度 99.5%及最佳的透光度。
  一階段及二階段 (調整 pH: pH 9 -> pH 4.4 -> pH 9) pH調整與未調整 pH的漿料相比,其凝聚程度分別為:pH 4.4 > two-step > pH 10 > pH 9 (本質 pH)。本研究以理論計算不同條件下顆粒間的作用能,嘗試探討影響顆粒間凝聚狀況的因素,包含漿料電解質濃度、顆粒表面電位、分散劑的吸附量及吸附層厚度。而顆粒間作用能的計算結果與實驗結果有相同的趨勢,因此可用來分析漿料的分散行為。
Properties of alumina ceramics are closely connected with the process condition. In which slurry preparation is a key point for colloidal forming. In this study, the dispersion behavior of slurries, the process of slip casting, and the pressureless sintering behavior have been discussed by changing the formulation of slurries, including dispersant amount, solid loading, and pH adjustment.
In terms of characteristics of slurries, the results show that viscosity could decrease effectively by the 75% coverage of polymer on particle surfaces, and the green forming is facilitated by suitable amounts of free polymer. 1 wt% of the optimal dispersant amount is selected, at which viscosity of the slurry is low, the saturated adsorption is achieved, and the green density is the highest. In addition, the adsorption of the polymer (PAA-NH4) on alumina particles is a reversible reaction. An adsorption or desorption will occurs with the change of pH.
In terms of green forming and sintering behavior, greens made from slurries with higher solid loading show broader temperature range of sintering shrinkage, however the sintering process is complete at a lower temperature. The dilatometer results suggest that the mean pore size of the green is smaller but the pore size distribution is broader. There is a suitable range of solid loading for slip casting. In this study, the highest relative density 99.5% and the best transmittance is achieved at the sintering condition of 1400oC/4 h from the sample which solid loading is 30 vol% and the dispersant amount is 1 wt%.
Compared with the single-step, two-step, and no pH adjustment, we found the flocculation degree of slurries follows the order: pH 4.4 > two-step > pH 10 > pH 9 (nature pH). The interparticle energies under different conditions is calculated theoretically, and factors which affect the interparticle flocculated situation is studied. The experiment results could be well interpreted by the calculated interparticle energies.
摘要......................................................I
Abstract.................................................II
致謝....................................................III
表目錄.................................................VIII
圖目錄...................................................IX

第一章 前言..............................................1
1.1 動機.................................................1
1.2 研究方向與目的.......................................1

第二章 文獻回顧..........................................3
2.1 a-氧化鋁之結構、特性及應用...........................3
2.2 微晶粒氧化鋁陶瓷之特性及應用.........................3
2.3 膠體的分散與凝聚.....................................5
2.4 顆粒間的作用力.......................................8
2.4.1 凡得瓦爾作用力.....................................8
2.4.2 靜電作用力.........................................8
2.4.2.1 膠體的表面電荷及雙電層...........................8
2.4.2.2 影響靜電作用能的因素............................14
2.4.3 DLVO理論..........................................16
2.4.4 空間位阻作用力....................................16
2.4.5 靜電空間位阻作用力................................20
2.5 聚電解質分散劑......................................22
2.5.1 聚丙烯酸之簡介....................................22
2.5.2 聚丙烯酸之吸附機制................................24
2.6 pH調整對添加聚丙烯酸之氧化鋁漿料穩定性之影響........24
2.7 膠體的流變行為......................................26
2.8 注漿成形............................................28
2.9 固相燒結理論........................................29
2.9.1 固相燒結模式......................................29
2.9.2 晶粒成長..........................................29
2.9.3 凝聚體粉末之燒結行為..............................31

第三章 實驗方法與步驟...................................35
3.1 起始原料............................................35
3.2 實驗流程及樣品製備..................................35
3.3 特性分析............................................44
3.3.1 漿料黏度量測......................................44
3.3.2 分散劑吸附量分析..................................44
3.3.3 表面電位量測......................................44
3.3.4 密度量測..........................................44
3.3.5 微結構觀察........................................45
3.3.6 燒結收縮量測......................................45

第四章 結果與討論.......................................46
4.1 分散劑含量對漿料分散、注漿成形之影響................46
4.1.1 分散劑吸附行為....................................46
4.1.2 漿料流變行為......................................46
4.1.3 生坯密度..........................................49
4.1.4 討論..............................................49
4.1.4.1 漿料流變行為、分散劑吸附及生坯密度之關係........49
4.1.4.2 實驗結果與文獻之比較............................51
4.2 固含量對漿料分散、注漿成形及燒結行為之影響..........51
4.2.1 分散劑吸附行為....................................55
4.2.2 漿料流變行為......................................55
4.2.3 黏度預測及最大固含量之計算........................55
4.2.4 生坯密度..........................................58
4.2.5 生坯微結構........................................61
4.2.6 燒結行為..........................................61
4.2.6.1 燒結收縮緻密化過程..............................61
4.2.6.2 燒結體密度及微結構之演變........................65
4.2.7 討論..............................................65
4.2.7.1 不同固含量之坯體成形過程........................65
4.2.7.2 實驗結果與文獻之比較............................70
4.3 pH調整對漿料分散、注漿成形及燒結行為之影響..........72
4.3.1 分散劑吸附行為....................................72
4.3.1.1 pH調整對分散劑吸附行為的影響....................72
4.3.1.2 分散劑吸附層厚度................................74
4.3.2 ζ電位.............................................74
4.3.3 流變行為..........................................77
4.3.4 顆粒間作用力之計算................................77
4.3.5 生坯密度及微結構..................................87
4.3.6 燒結行為..........................................87
4.3.7 討論- pH調整對漿料、生坯及燒結體特性之影響........90
4.4 綜合討論............................................93
4.4.1 影響流變性質之因素................................93
4.4.2 影響生坯結構之因素................................94
4.4.3 影響燒結行為之因素................................95

第五章 結論.............................................97

參考文獻.................................................99

附錄....................................................105
1. R. Apetz and M. P B. van Bruggen, “Transparent alumina: A light-scattering modal,” J. Am. Ceram. Soc., 86 [3] 480-486 (2003).
2. A. Krell, P. Blank, H. Ma, and T. Hutzler, “Transparent sintered corundum with high hardness and strength,” J. Am. Ceram. Soc., 86 [1] 12-18 (2003).
3. Y. T. O, J. B. Koo, K.J. Hong, J. S. Park, and D. C. Shin, “Effect of grain size on transmittance and mechanical strength of sintered alumina,” Mater. Sci. Eng. A, 374, 191-195 (2004).
4. C. Klein and C. S. Hurlbut, Manual of mineralogy, Wiley, New York, (1993).
5. I. W. Chen and L. A. Xue, “Development of superplastic structural ceramics,” J. Am. Ceram. Soc., 73 [9] 2585-2609 (1990).
6. R. W. Rice, C. C. Wu, and F. Borchelt, “Hardness-grain-size relations in ceramics,” J. Am. Ceram. Soc., 77 [10] 2539-2553 (1994).
7. N. Miyahara, K. Yamaishi, Y. Mutoh, and K. Uematsu, “Effect of grain size on strength and fracture toughness in alumina,” JSME International Journal, 37 [3] 231-237 (1994).
8. R. S. Roy, H. Guchhait, A. Chanda, D. Basu, and M. K. Mitra, “Improved sliding wear-resistance of alumina with sub-micron grain size: A comparison with coarse grained material,” J. Eur. Ceram. Soc., 27, 4737-4743 (2007).
9. 王志仁,微晶粒氧化鋁陶瓷體之製備與機械性質,國立成功大學資源工程學系,博士論文,中華民國九十七年。
10. J. A. Lewis, “Colloidal processing of ceramics,” J. Am. Ceram. Soc., 83 [10] 2341-2359 (2000).
11. 高濂、孫靜、劉陽橋,奈米粉體的分散及表面改性,五南圖書,中華民國九十四年。
12. H. C. Hamaker, “The London-van der Waals attraction between spherical particles,” Physica, 4, 1058-1072 (1937).
13. P. C. Hiemenz, Principles of colloid and surface chemistry, second edition, Marcel Dekker, New York, (1986).
14. L. Bergstrom, “Hamaker constants of inorganic materials,” Adv. Colloid Interface Sci., 70, 125-169 (1997).
15. A. R. Studart, E. Amstad, M. Antoni, and L. J. Gauckler, “Rheology of concentrated suspensions containing weakly attractive alumina nanoparticles,” J. Am. Ceram. Soc., 89 [8] 2418-2425 (2006).
16. D. H. Everett, Basic principles of colloid science, Royal Society of Chemistry, London, (1988).
17. A. Pettersson, G. Marino, A. Pursigeimo, and J. B. Rosengolm, “Electrosteric stabilization of Al2O3, ZrO2, and 3Y-ZrO2 suspensions: effect of dissociation and type of polyelectrolyte,” J. Colloid Interface Sci., 228, 73-81 (2000).
18. R. M. Pashley and M. E. Karaman, Applied colloid and surface chemistry, Wiley, Canberra, (2004).
19. M. J. Rosen, Surfactants and interfacial phenomena, second edition, Wiley, New York, (1988).
20. J. W. Goodwin, colloidal dispersions, Royal Society of Chemistry, London, (1982).
21. D. J. Shaw, Introduction to colloid and surface chemistry, forth edition, Butterworths, Oxford, (1992).
22. S. Jailani, G. V. Franks, and T. W. Healy, “ζ potential of nanoparticle suspensions: Effect of electrolyte concentration, particle size, and volume fraction,” J. Am. Ceram. Soc., 91 [4] 1141-1147 (2008).
23. J. N. Israelachvili, Intermolecular and surface forces, second edition, Academic Press, London, (1992).
24. 謝岳志,分散劑對氧化鋯漿料流變性質之影響,國立成功大學材料科學與工程學系,碩士論文,中華民國九十五年。
25. M. N. Rahaman, Ceramic processing, CRC Press, (2006).
26. B. Vincent, J. Edwards, S. Emmett, and A. Jones, “Depletion flocculation in dispersions of sterically-stabilised particles (soft spheres),” Colloids Surf., 18, 261-281 (1986).
27. K. Lu, “Theoretical analysis of colloidal interaction energy in nanoparticle suspensions,” Ceramics International, 34, 1353-1360 (2008).
28. J. Cesarano III, I. A. Aksay, and A. Bleier, “Stability of aqueous a-Al2O3 suspensions with poly(methacrylic acid) polyelectrolyte,” J. Am. Ceram. Soc., 71 [4] 250-255 (1988).
29. J. H. Jean and H. R. Wang, “Stabilization of aqueous BaTiO3 suspensions with ammonium salt of poly(acrylic acid) at various pH values,” J. Mater. Res., 13 [8] 2245–2250 (1998).
30. W. B. Russel, D. A. Saville, and W. R. Schowalter, Colloidal dispersions, Cambridge University Press, Cambridge, (1989).
31. H. Y. T. Chen, W. C. J. Wei, K. C. Hsu, and C. S. Chen, “Adsorption of PAA on the a-Al2O3 Surface,” J. Am. Ceram. Soc., 90 [6] 1709-1716 (2007).
32. D. Santhiya, S. Subramanian, K. A. Natarajan, and S. G. Malghan, “Surface chemical studies on the competitive adsorption of poly(acrylic acid) and poly(vinyl alcohol) onto alumina,” J. Colloid Interface Sci., 216, 143-153 (1999).
33. D. Santhiya, S. Subramanian, K. A. Natarajan, and S. G. Malghan, “Surface chemical studies on alumina suspensions using ammonium poly(methacrylate),” Colloids Surf. A, 164, 143-154 (2000).
34. B. P. Singh, S. Bhattacharjee, L. Besra, and D. K. Sengupta, “Electrokinetic and adsorption studies of alumina suspensions using Darvan C as dispersant,” J. Colloid Interface Sci., 289, 592-596 (2005).
35. L. Saravanan and S. Subramanian, “Surface chemical studies on the competitive adsorption of poly(ethylene glycol) and ammonium poly(methacrylate) onto alumina,” J. Colloid Interface Sci., 284, 363-377 (2005).
36. K. K. Das and P. Somasundaran, “Flocculation-dispersion characteristics of alumina using a wide molecular weight range of polyacrylic acids,” Colloids Surf. A, 223, 17-25 (2003).
37. Y. Hirata, J. Kamikakimoto, A. Nishimoto, and Y. Ishihara, “Interaction between a-Al2O3 surface and polyacrylic acid,” J. Ceram. Soc. Japan, 100 [1] 7-12 (1992).
38. 陳馨怡,分散劑於 a-氧化鋁表面之吸附研究,國立台灣大學材料科學與工程學系,碩士論文,中華民國九十四年。
39. H. Guldberg-Pedersen and L. Bergstrom, “Stabilizing ceramic suspensions using anionic polyelectrolytes: adsorption kinetics and interparticle forces,” Acta mater. 48, 4563-4571 (2000).
40. K. Lu and C. S. Kessler, “Optimization of a nanoparticle suspension for freeze casting,” J. Am. Ceram. Soc., 89 [8] 2459-2465 (2006).
41. R. L. Coble, “Sintering crystalline solids: II, experimental test of diffusion models in powder compacts,” J. Appl. Phys., 32, 793-799 (1961).
42. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, John Wiley and Sons, New York, (1975).
43. Z. Z. Fang and H. Wang., “Densification and grain growth during sintering of nanosized particles,” Int. Mater. Rev., 53 [6] 326-352 (2008).
44. F. F. Lange, “Sinterability of agglomerated powders,” J. Am. Ceram. Soc., 67 [2] 83–89 (1984).
45. C. J. Shih and M. H. Hon, “Stability of colloidal silicon nitride suspension with poly-electrolyte,” Ceramics International, 26, 47-55 (2000).
46. J. Davies and J. G. P. Binner, “The role of ammonium polyacrylate in dispersing concentrated alumina suspensions,” J. Eur. Ceram. Soc., 20, 1539-1553 (2000).
47. L. Palmqvist, O. Lyckfeldt, E. Carlstrom, Per Davoust, A. Kauppi, and K. Holmberg, “Dispersion mechanisms in aqueous alumina suspensions at high solids loadings,” Colloids Surf. A, 274, 100-109 (2006).
48. J. H. Jean and H. R. Wang, “Dispersion of aqueous Barium titanate suspensions with ammonium salt of poly(methacrylic acid),” J. Am. Ceram. Soc., 81 [6] 1589–1599 (1998).
49. J. Tsubaki, M. Kato, M. Miyazawa,T. Kuma, and H. Mori, “The effects of the concentration of a polymer dispersant on apparent viscosity and sedimentation behavior of dense slurries,” Chem. Eng. Sci., 56, 3021-3026 (2001).
50. G. Tari, J. M. F. Ferreira, and O. Lyckfeldt, “Influence of the stabilizing mechanism and solid loading on slip casing of alumina,” J. Eur. Ceram. Soc., 18, 479-486 (1998).
51. Y. Liu and L. Gao, “Dispersion of aqueous alumina suspensions using copolymers with synergistic functional groups,” Mater. Chem. Phys., 82, 362-369 (2003).
52. S. Baklouti, C. Pagnoux, T. Chartier, and J. F. Baumard, “Processing of aqueous a-Al2O3, a-SiO2 and a-SiC suspensions with polyelectrolytes,” J. Eur. Ceram. Soc., 17, 1387-1392 (1997).
53. K. Lu and C. S. Kessler, “Optimization of a nanoparticle suspension for freeze casting,” J. Am. Ceram. Soc., 89 [8] 2459-2465 (2006).
54. L. C. Guo, Y. Zhang, N. Uchida, and K. Uematsu, “Adsorption effects on the rheological properties of aqueous alumina suspensions with polyelectrolyte,” J. Am. Ceram. Soc., 81 [3] 549-556 (1998).
55. G. Bertrand, C. Filiatre, H. Mahjoub, A. Foissy, and C. Coddet, “Influence of slurry characteristics on the morphology of spray-dried alumina powders,” J. Eur. Ceram. Soc., 23, 263-271 (2003).
56. M. Burke, R. Greenwood, and K. Kendall, “Experimental methods for measuring the optimum amount of dispersant for seven sumitomo alumina powders,” J. Mater. Sci., 33, 5149-5156 (1998).
57. A. Einstein, Investigation of the Brownian movement, Dover, New York, (1956).
58. D. M. Liu, “Particle packing and rheological property of highly-concentrated ceramic suspensions: ψm determination and viscosity prediction,” J. Mater. Sci., 35, 5503-5507 (2000).
59. D. M. Liu, “Adsorption, rheology, packing, and sintering of nanosize ceramic powders,” Ceramics International, 25, 107-113 (1999).
60. W. J. Tseng and F. Tzeng, “Effect of ammonium polyacrylate on dispersion and rheology of aqueous ITO nanoparticle colloids,” Colloids Surf. A, 276, 34-39 (2006).
61. X. Li, L. Wang, M. Iwasa, and M. Hayakawa, “Effect of powder characteristics on centrifugal slip casting of alumina powders,” J. Ceram. Soc. Japan, 111 [8] 594-599 (2003).
62. J. Cesarano III and I. A. Aksay, “Processing of highly concentrated aqueous a-alumina suspensions stabilized with polyelectrolytes,” J. Am. Ceram. Soc., 71 [12] 1062-1067 (1988).
63. Y. Hotta, T. Tsugoshi, T. Nagaoka, M. Yasuoka, K. Nakamura, and K. Wateri, “Effect of oligosaccharide alcohol addition to alumina slurry and translucent alumina produced by slip casting,” J. Am. Ceram. Soc., 86 [5] 755-760 (2003).
64. T. Isobe, Y. Hotta, and K. Watari, “Dispersion of nano- and submicron-sized Al2O3 particles by wet-jet milling method,” Mater. Sci. Eng. B, 148, 192-195 (2008).
65. K. Lu and C. Kessler, “Colloidal dispersion and rheology study of nanoparticles,” J. Mater. Sci., 41, 5613-5618 (2006).
66. F. Boschini, B. Guillaume, A. Rulmont, R. Cloots, and R. Moreno, “Slip casting of barium zirconate aqueous concentrated suspensions,” J. Eur. Ceram. Soc., 26, 1591-1598 (2006).
67. P. A. Smith, H. M. Kerch, A. G. Haerle, and J. Keller, “Microstructural characterization of alumina and silicon carbide slip-cast cakes,” J. Am. Ceram. Soc., 79 [10] 2515-2526 (1996).
68. G. Tari and J. M. F. Ferreira, “Influence of solid loading on drying-shrinkage behavior of slip casting bodies,” J. Eur. Ceram. Soc., 18, 487-493 (1998).
69. Z. C. Chen, T. A. Ring, and J. Lemaitre, “Stabilization and processing of aqueous BaTiO3 suspension with polyacrylic acid,” J. Am. Ceram. Soc., 75 [12] 3201-3208 (1992).
70. X. Li and Q. Li, “YAG ceramic processed by slip casting via aqueous slurries,” Ceramics International, 34, 397-401 (2008).
71. D. M. Liu, “Influence of solid loading and particle size distribution on the porosity development of green alumina ceramic mouldings,” Ceramics International, 23, 513-520 (1997).
72. Y. Fukuda, T. Togashi, M. Naito, and H. Kamiya, “Analysis of electrosteric interaction of polymer dispersion in dense alumina suspensions with different counter-ion densities using an atomic force microscope,” J. Ceram. Soc. Japan, 109 [6] 516-520 (2001).
73. M. Giesbers, J. M. Kleijn, G. J. Fleer, and M. A. C. Stuart, “Forces between polymer-covered surfaces: A colloidal probe study,” Colloids Surf. A, 142, 343-353 (1998).
74. H. G. Pedersen and L. Bergstrom, “Forces measured between zirconia surfaces in poly(acrylic) acid solutions,” J. Am. Ceram. Soc., 82 [52] 1137-1145 (1999).
75. E. Laarz, A. Meurk, J. A. Yanez, and L. Bergstrom, “Silicon nitride colloidal probe measurements, interparticle forces and role of surface-segment interactions in poly(acrylic) acid adsorption from aqueous solution,” J. Am. Ceram. Soc., 84 [8] 1675-1682 (2001).
76. J. H. Jean and H. R. Wang, “Effects of solid loading, pH, and polyelectrolyte addition on the stabilization of concentrated aqueous BaTiO3 suspensions,” J. Am. Ceram. Soc., 83 [2] 277-280 (2000).
77. S. Chibowski, E. O. Mazur, and J. Patkowski, “Influence of the ionic strength on the adsorption properties of the system dispersed aluminium oxide-polyacrylic acid,” Mater. Chem. Phys., 93, 262-271 (2005).
78. R. D. Wesley, T. Cosgrove, L. Thompson, S. P. Armes, N. C. Billingham, and F. L. Baines, “Hydrodynamic layer thickness of a polybase brush in the presence of salt,” Langmuir, 16 [10] 4467-4469 (2000).
79. G. V. Franks and L. Meagher, “The isoelectric points of sapphire crystals and alpha-alumina powder,” Colloids Surf. A, 124, 99-110 (2003).
80. D. H. Napper, “Polymeric stabilization of colloidal dispersions,” Academic Press, (1983).
81. I. Nettleship and R. Mcafee, “Microstructural pathways for the densification of slip casting alumina,” Mater. Sci. Eng. A, 352, 287-293 (2003).
82. A. Krell and J. Klimke, “Effects of the homogeneity of particle coordination on solid-state sintering of transparent alumina,” J. Am. Ceram. Soc., 89 [6] 1985-1992 (2006).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top