1.R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Found. Crystallogr., 32, 751 (1976).
2.K. P. Surendran, P. V. Bijumon, P. Mohanan, and M. T. Sebastian, “(1-x) MgAl2O4-x TiO2 dielectrics for microwave and millimeter wave applications,” Appl. Phys. A., 81, 823 – 826 (2005).
3.K. P. Surendran, P. V. Bijumon, P. Mohanan, and M. T. Sebastian, “A low loss, dielectric substrate in ZnAl2O4-TiO2 system for microelectronic applications,” J. Appl. Phys., 98, 044101 (2005).
4.J. H. Sohn, T. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoonand and H. J. Kim, “Microwave dielectric characteristics of ilmenite-type titanates with high Q values,” Jpn. J. Appl. Phys., 33, 5466-5470 (1994).
5.A. Belous, O. Ovchar, D. Durylin, M. Valant, M. M-K, and D. Suvorov, “Microwave composite dielectrics based on magnesium titanates,” J. Eur. Cerarn. Soc., 27, 2963-2966 (2007).
6.邱碧秀,電子陶瓷材料,徐氏基金會出版,1997。
7.袁帝文、王岳華、謝孟翰、王弘毅, 高頻通訊電路設計,高立圖書有限公司,2-7 (2000)。
8.陶瓷材料概論(下),Kingery, Bowen, Uhlmann著,陳皇鈞譯,曉園出版社 ,870-871 (2006)。
9.D. M. Pozar, “Microwave engineering,” Addison-Wesley (1998).
10.D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators, ” Microwave SysTFm News, 13, 152-161 (1983).
11.R. Heidinger and S. Nazare, ‘‘Influence of porosity on the dielectric properties of AIN in the range of 30-40 GHz,” Powder Metall. Int., 20, 30-32 (1988).
12.S. J. Penn, N. M. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, “Effect of porosity and grain size on the microwave dielectric properties of sintered alumina,” J. Am. Ceram. Soc., 80 [7], 1885-88 (1997).
13.E. H. Walker, “The novel low temperature synthesis of nano crystalline MgAl2O4 spinel using "gel" precursors,” Mater. Res. Bull., 37, 1041-1050 (2002).
14.余樹楨,晶體之結構與性質,渤海堂文化公司,300-303 (2007)。
15.N. J. van der Laag, M. D. Snel, P. C. M. M. Magusin, and G.. de With “ Structural, elastic, thermophysical and dielectric properties of zinc aluminate (ZnAl2O4),” J. Eur. Cerarn. Soc., 24, 2417–2424 (2004).
16.R.. K. Datta and R. Roy, “Order-disorder in MgAl2O4 the system: MgAl2O4- LiAl6O8, MgAl2O4-NiCr2O4, MgAl2O4-NiAl2O4, and NiAl2O4-ZnAl2O4,” Am. Mineral., 53, 1456-1475 (1968).
17.S.T. Murphy, B.P. Uberuaga, J.B. Ball, et al, “Cation diffusion in magnesium aluminate spinel,” Soild State Ionics, 180, 1-8 (2009).
18.S. M. Hosseini, “Structural, electronic and optical properties of spinel MgAl2O4 oxide,” Phys. status solidi B, 245, 12, 2800–2807 (2008).
19.B. Phillips, J. J. Hutta, and I. Warshaw, “Phase equilibria in the system NiO-AI,O,-SiO,” J. Am. Ceram. Soc., 46, 12, 579-583 (1963).
20.C. W. Zheng, S. Y. Wu, X. M. Chen, and K. X. Song, “Modification of MgAl2O4 microwave dielectric ceramics by Zn Substitution,” J. Am. Ceram. Soc., 90 [5], 1483–1486 (2007).
21.A. N. Cormack, G. V. Lewis, S. C. Parker and C. R. A. Catlow, “On the cation distribution of spinels,” J. Phys. Chem. Solids., 49, 1, 53-57, (1988).
22.H. St. C. O'Neill and A. Navrotsky, “Simple spinels: crystallographic parameters, cation radii, lattice energies, and cation distribution,” Am. Mineral., 68, 181-194 (1983).
23.M. A. Petrova, G. A. Mikirticheva, A. S. Novikova, and V. F. Popova, “Spinel solid solutions in the systems MgAl2O4 –ZnAl2O4 and MgAl2O4–Mg2TiO4,” J. Materal. Res., 12 [10], 2584-2588 (1997).
24.I. Ganesh, J. M. F. Ferreira, “Synthesis and characterization of MgAl2O4–ZrO2 composites,” Ceram. Int., 35, 259–264 (2009).
25.P. Barpanda, S. K. Behera, P. K. Gupta, S. K. Pratihar, and S. Bhattacharya, “Chemically induced order disorder transition in maghesium aluminium spinel,” J. Eur. Ceram. Soc., 26, 2603-2609 (2006).
26.R. D. Shannon, G. R. Rossman “Dielectric constant of MgAl2O4 spinel and the oxide additivity rule,” J. Phys. Chem. Solid., 52 [9], 1055-1059 (1991).
27.W. Lei, W. Z. Lu, J. H. Zhu, and X. H. Wang, “Microwave dielectric properties of ZnAl2O4 - TiO2 spinel-based composites,” Mater. Let., 61, 4066-4069 (2007).
28.W. Lei, W. Z. Lu, J. H. Zhu, F. Liang, and D. Liu, “Modification of ZnAl2O4-based low-permittivity microwave dielectric ceramics by adding 2MO-TiO2 (M=Co, Mg, and Mn), J. Am. Ceram. Soc., 91, 958-1961 (2008)
29.N. Mori, Y. Sugimoto, J. Harada, and Y. Higuchi, “Dielectric properties of new glass-ceramics for LTCC applied to microwave or millimeter-wave frequencies,” J. Eur. Ceram. Soc., 26, 1925–1928 (2006).
30.G. C. Kuczynski, Sintering and related phenomena, Gorden and Breach Science Publisher, (1965).
31.R. L. Coble, “Sintering crystalline solids. Ι. Intermediate and final state diffusion models,” J. Appl. Phys., 32, 787 (1961).
32.C. Y. Huang, Thermal expansion behavior of sodium zirconium phosphate structure type materials, Ph. D. Thesis, The Pennsylvania State University, U.S.A. (1990).
33.王俊傑,ZnNb2O6 介電陶瓷材料燒結與微波特性之研究,國立成功大學電機工程研究所碩士論文 (2003)。34.C. L. Huang, J. L. Hou, C.L. Pan, C. Y. Huang, C. W. Peng, C. H. Wei, and Y. H. Huang, “Effect of ZnO additive on sintering behavior and microwave dielectric properties of 0.95 MgTiO3–0.05 CaTiO3 ceramics,” J. Alloys Compd., 450, 359–363 (2008).
35.S. Solomon, J. T. Joseph, H. P. Kumar, and J. K. Thomas, “Effect of ZnO doping on the microwave dielectric properties of LnTiNbO6 (Ln=Sm or Dy) ceramics,” Mater. Lett., 60, 2814–2818 (2006).
36.S. Y. Cho, M. K. Seo, K. S. Hong, and S. J. Park, “Influence of ZnO evaporation on the microwave dielectric properties of La (Zn1/2Ti1/2) O3,” Mater. Res. Bull., 32, 6, 725-735 (1997).
37.J. D. Breeze, J. M. Perkins, D. W. McComb, and N. M. Alford, “Do grain boundaries affect microwave dielectric loss in oxides,” J. Am. Ceram. Soc., 92 [3], 671–674 (2009).
38.C. L. Huang and C. H. Shen, “Phase evolution and dielectric properties of (Mg0.95M2+0.05) Ti2O5,” J. Am. Ceram. Soc., 92 [2], 384-388 (2009).
39.S. J. Penn, N. Mcn. Alford, A. Templeton, X. Wang, M. Xu, M. Reece, and K. Schrapel, “Effect of porosity and grain size on the microwave dielectric properties of sintered alumina,” J. Am. Ceram. Soc., 80 [7], 1885-1888 (1997).
40.H. Ogawaa, A. Kana, S. Ishiharaa, and Y. Higashida, “Crystal structure of corundum type Mg4(Nb2-xTax)O9 microwave dielectric ceramics with low dielectric loss,” J. Eur. Ceram. Soc., 23, 2485–2488 (2003).
41.W. Lei, W. Z. Lu, D. Liu, and J. H. Zhu, “Phase evalution and microwave dielectric properties of (1-x) ZnAl2O4_ x Mg2TiO4 ceramics,” J. Am. Ceram. Soc., 92 [1], 105-109 (2009).