跳到主要內容

臺灣博碩士論文加值系統

(3.237.6.124) 您好!臺灣時間:2021/07/24 04:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林哲甫
研究生(外文):Che-fu Lin
論文名稱:單次不同衝擊的運動模式訓練後骨代謝指標的短期變化
論文名稱(外文):Acute response of serum bone markers to exercise with different impact
指導教授:黃滄海黃滄海引用關係
指導教授(外文):Tsang-hai Hang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:體育健康與休閒研究所
學門:民生學門
學類:運動休閒及休閒管理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:44
中文關鍵詞:機械性負荷運動骨骼血液指標骨鈣素
外文關鍵詞:osteocalcinexercisemechanical loadingboneserum markers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
目的:本實驗主要探討單次不同運動後是否會造成骨代謝反應上的差異。方法:32名自願參加的未受訓練的大學男性隨機分成為四組,分別進行單回合的運動訓練(增強式跳躍組n=8、阻力運動組 n=8、間歇跑步組n=8、控制組 n=8),控制組未參與任何運動訓練。血液採集時間為運動前禁食血液、單回合運動後5、15分鐘、1、3、6、24、48、72小時。測量血清中的鈣 (Ca)、磷 (Phos)、乳酸 (Lac)、肌酸激酶 (CK)、骨鈣素 (OC)、骨特異性鹼性磷酸酶 (TRAP)代謝指標在運動後的變化。結果:三種運動後在乳酸與鈣的變化上有相似的趨勢,不過阻力運動組在運動過程中的心跳率較低。在血清中的磷方面,增強式跳躍組與間歇跑步組在運動後15分鐘以內顯著較高。三種運動在CK的變化呈現差異,阻力訓練組在運動後三天顯著高於其他兩組。增強式訓練組在運動後十五分鐘以內骨鈣素顯著提升。三組運動後TRAP在各時間點並未有顯著的變化。結論:對於本實驗的運動設計,血液指標似乎無法及時反應出各運動所產生的差異。增強式訓練所造成在骨鈣素水準的提升,可能不是經由骨骼相關細胞所產生影響,因此,需要更進一步的研究證實。
Objective: The purpose of this study was to investigate whether different single bout exercises would cause different response in short-term bone metabolism. Methods: Thirty-two young male untrained college students were recruited and randomly assigned into four groups and subjects of different groups respectively performed a single bout plyometric exercise (the PL group, n=8), resistance training (the RT group, n=8) and intermittent running (the IR group, n=8). A sedentary control group was also included, which followed the same time schedule of experimentation without performing any exercise. Blood samples were collected before and after (5min, 15min, 1hr, 3hr, 6hr, 24hr, 48hr, 72hr) exercise trial. Serum makers assay of calcium, phosphorus, lactate, creatine kinase (CK), osteocalcin and tartrate-resistant acid phosphatase (TRAP) were included. Results: Three exercise groups showed similar trend on serum lactate, calcium while the RT group was lower in exercise heart rate. Within 15min after exercise, the PL and IR showed significantly higher serum phosphorus. Three exercise groups were different in serum CK and the RT group revealed a significant highest values 3 days after exercise. Osteocalcin level were significantly up-regulated in the PL group within 15 minutes after exercise. In all time points, serum TRAP showed no difference among groups. Conclusions: Serum markers assay seemed not to be sensitive enough to detect effects from different exercises of the present study. A brief raise of osteocalcin in the PL group might not be caused by bone-related cellular activity, which needs further studies to clarify.
摘要 ...................................................................................................................... I
Abstract ..................................................................................................................... II
致謝 .................................................................................................................... III
Contents .................................................................................................................... IV
List of tables .................................................................................................................... VI
List of Figures ................................................................................................................... VII
Chapter1 Introduction ................................................................................................. 1
Chapter2 Literature Review ........................................................................................ 3
2.1 The effects of different types of exercise on bone morphology ........................ 3
2.2 Long-term exercise training and bone metabolism markers ............................. 4
2.3 The short-term response of bone metabolism in different types of exercise ... 5
2.4 Summary ............................................................................................................. 8
Chapter3 Materials and Methods ............................................................................... 9
3.1 Subjects ............................................................................................................... 9
3.2 Exercise program ................................................................................................ 9
3.3 Biochemical measurements ............................................................................. 11
3.4 Statistical analyses ............................................................................................ 11
Chapter4 Results ....................................................................................................... 13
4.1 Creatine kinase (CK): Markers of exercise induced muscle damage ................ 13
4.2 Serum bone markers assays ............................................................................. 13
Chapter5 Discussion .................................................................................................. 15
5.1 Effects of different exercise on short-term bone metabolism ......................... 15
V
5.2 Possible Mechanism ......................................................................................... 17
5.3 Conditions of exercise and potential effects on bone metabolism ................. 18
5.4 Minor indicators of bone metabolism: calcium and phosphorus .................... 20
5.5 General comments on exercise’s short-term effects ....................................... 21
5.6 Conclusions ....................................................................................................... 22
References ................................................................................................................... 24
黃滄海(譯) (2005)。運動與骨骼健康的原理與實務。台北:合記 (Karim K.,Heather M.,Pekka K.,Don L. John W. Kim B.,2001)
楊榮森(譯) (1997)。骨質疏鬆症:病因、診斷、治療。台北市:合記 (Riggs, B. L.,& Melton III, L. J., 1997)
Ali, N., & Siktberg, L. (2001). Osteoporosis prevention in female adolescents: calcium intake and exercise participation. Pediatric Nursing, 27(2), 132, 135-139.
Aoshima, H., Kushida, K., Takahashi, M., Ohishi, T., Hoshino, H., Suzuki, M., et al. (1998). Circadian variation of urinary type I collagen crosslinked C-telopeptide and free and peptide-bound forms of pyridinium crosslinks. Bone, 22(1), 73-78.
Ashizawa, N., Fujimura, R., Tokuyama, K., & Suzuki, M. (1997). A bout of resistance exercise increases urinary calcium independently of osteoclastic activation in men. Journal of Applied Physiology, 83(4), 1159-1163.
Ashizawa, N., Ouchi, G., Fujimura, R., Yoshida, Y., Tokuyama, K., & Suzuki, M. (1998). Effects of a single bout of resistance exercise on calcium and bone metabolism in untrained young males. Calcified Tissue International, 62(2), 104-108.
Bellew, J. W., & Gehrig, L. (2006). A comparison of bone mineral density in adolescent female swimmers, soccer players, and weight lifters. Pediatric physical therapy, 18(1), 19-22.
Bjarnason, N. H., Henriksen, E. E., Alexandersen, P., Christgau, S., Henriksen, D. B., & Christiansen, C. (2002). Mechanism of circadian variation in bone resorption. Bone, 30(1), 307-313.
25
Brahm, H., Piehl-Aulin, K., & Ljunghall, S. (1996). Biochemical markers of bone metabolism during distance running in healthy, regularly exercising men and women. Scandinavian Journal of Medicine and Science in Sports, 6(1), 26-30.
Brahm, H., Strom, H., Piehl-Aulin, K., Mallmin, H., & Ljunghall, S. (1997). Bone metabolism in endurance trained athletes: a comparison to population-based controls based on DXA, SXA, quantitative ultrasound, and biochemical markers. Calcified Tissue International, 61(6), 448-454.
Burr, D. B., Robling, A. G., & Turner, C. H. (2002). Effects of biomechanical stress on bones in animals. Bone, 30(5), 781-786.
Carter, D. R. (1984). Mechanical loading histories and cortical bone remodeling. Calcified Tissue International, 36 Suppl 1, S19-24.
Courteix, D., Lespessailles, E., Peres, S. L., Obert, P., Germain, P., & Benhamou, C. L. (1998). Effect of physical training on bone mineral density in prepubertal girls: a comparative study between impact-loading and non-impact-loading sports. Osteoporosis International, 8(2), 152-158.
Creighton, D. L., Morgan, A. L., Boardley, D., & Brolinson, P. G. (2001). Weight-bearing exercise and markers of bone turnover in female athletes. Journal of Applied Physiology, 90(2), 565-570.
Dalsky, G. P. (1987). Exercise: its effect on bone mineral content. Clinical Obstetrics and Gynecology, 30(4), 820-832.
Delmas, P. D. (2000). Markers of bone turnover for monitoring treatment of osteoporosis with antiresorptive drugs. Osteoporosis International, 11 Suppl 6, S66-76.
Delmas, P. D., Eastell, R., Garnero, P., Seibel, M. J., & Stepan, J. (2000). The use of biochemical markers of bone turnover in osteoporosis. Committee of Scientific
26
Advisors of the International Osteoporosis Foundation. Osteoporosis International, 11 Suppl 6, S2-17.
Dovio, A., Generali, D., Tampellini, M., Berruti, A., Tedoldi, S., Torta, M., et al. (2008). Variations along the 24-hour cycle of circulating osteoprotegerin and soluble RANKL: a rhythmometric analysis. Osteoporosis International, 19(1), 113-117.
Duncan, C. S., Blimkie, C. J., Cowell, C. T., Burke, S. T., Briody, J. N., & Howman-Giles, R. (2002). Bone mineral density in adolescent female athletes: relationship to exercise type and muscle strength. Medicine and Science in Sports and Exercise, 34(2), 286-294.
Egan, E., Reilly, T., Giacomoni, M., Redmond, L., & Turner, C. (2006). Bone mineral density among female sports participants. Bone, 38(2), 227-233.
Ehrnborg, C., Lange, K. H., Dall, R., Christiansen, J. S., Lundberg, P. A., Baxter, R. C., et al. (2003). The growth hormone/insulin-like growth factor-I axis hormones and bone markers in elite athletes in response to a maximum exercise test. Journal of Clinical Endocrinology and Metabolism, 88(1), 394-401.
Fredericson, M., Chew, K., Ngo, J., Cleek, T., Kiratli, J., & Cobb, K. (2007). Regional bone mineral density in male athletes: a comparison of soccer players, runners and controls. British Journal of Sports Medicine, 41(10), 664-668; discussion 668.
Frost, H. M. (1994). Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians. Angle Orthodontist, 64(3), 175-188.
Gass, M., & Dawson-Hughes, B. (2006). Preventing osteoporosis-related fractures: an overview. American Journal of Medicine, 119(4 Suppl 1), S3-S11.
Godfrey, R. J., Madgwick, Z., & Whyte, G. P. (2003). The exercise-induced growth hormone response in athletes. Sports Medicine, 33(8), 599-613.
27
Greenspan, S. L., Dresner-Pollak, R., Parker, R. A., London, D., & Ferguson, L. (1997). Diurnal variation of bone mineral turnover in elderly men and women. Calcified Tissue International, 60(5), 419-423.
Gundberg, C. M., Markowitz, M. E., Mizruchi, M., & Rosen, J. F. (1985). Osteocalcin in human serum: a circadian rhythm. Journal of Clinical Endocrinology and Metabolism, 60(4), 736-739.
Henriksen, D. B., Alexandersen, P., Bjarnason, N. H., Vilsboll, T., Hartmann, B., Henriksen, E. E., et al. (2003). Role of gastrointestinal hormones in postprandial reduction of bone resorption. Journal of Bone and Mineral Research, 18(12), 2180-2189.
Herrmann, M., Muller, M., Scharhag, J., Sand-Hill, M., Kindermann, W., & Herrmann, W. (2007). The effect of endurance exercise-induced lactacidosis on biochemical markers of bone turnover. Clinical Chemistry and Laboratory Medicine, 45(10), 1381-1389.
Heuck, C., Skjaerbaek, C., & Wolthers, O. D. (1998). Diurnal rhythm of serum osteocalcin in normal children. Acta Paediatrica, 87(9), 930-932.
Hirota, T., & Hirota, K. (2002). [Exercise and other lifestyle factors for prevention of osteoporosis during growth and young adulthood]. Clinical calcium, 12(4), 489-494.
Honda, A., Umemura, Y., & Nagasawa, S. (2001). Effect of high-impact and low-repetition training on bones in ovariectomized rats. Journal of bone and mineral research, 16(9), 1688-1693.
Ivaska, K. K., Hentunen, T. A., Vaaraniemi, J., Ylipahkala, H., Pettersson, K., & Vaananen, H. K. (2004). Release of intact and fragmented osteocalcin molecules from bone
28
matrix during bone resorption in vitro. The Journal of biological chemistry, 279(18), 18361-18369.
Ju, H. S., Leung, S., Brown, B., Stringer, M. A., Leigh, S., Scherrer, C., et al. (1997). Comparison of analytical performance and biological variability of three bone resorption assays. Clinical chemistry, 43(9), 1570-1576.
Kanno, T., Takahashi, T., Tsujisawa, T., Ariyoshi, W., & Nishihara, T. (2007). Mechanical stress-mediated Runx2 activation is dependent on Ras/ERK1/2 MAPK signaling in osteoblasts. Journal of cellular biochemistry, 101(5), 1266-1277.
Karlsson, M. K., Vergnaud, P., Delmas, P. D., & Obrant, K. J. (1995). Indicators of bone formation in weight lifters. Calcified Tissue International, 56(3), 177-180.
Kessenich, C. R., Guyatt, G. H., & Rosen, C. J. (1998). Health-related quality of life and participation in osteoporosis clinical trials. Calcified Tissue International, 62(3), 189-192.
Knothe Tate, M. L., Steck, R., Forwood, M. R., & Niederer, P. (2000). In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation. The Journal of experimental biology, 203(Pt 18), 2737-2745.
Kodama, Y., Umemura, Y., Nagasawa, S., Beamer, W. G., Donahue, L. R., Rosen, C. R., et al. (2000). Exercise and mechanical loading increase periosteal bone formation and whole bone strength in C57BL/6J mice but not in C3H/Hej mice. Calcified Tissue International, 66(4), 298-306.
Kristoffersson, A., Hultdin, J., Holmlund, I., Thorsen, K., & Lorentzon, R. (1995). Effects of short-term maximal work on plasma calcium, parathyroid hormone, osteocalcin and biochemical markers of collagen metabolism. International Journal of Sports Medicine, 16(3), 145-149.
29
Kuruvilla, S. J., Fox, S. D., Cullen, D. M., & Akhter, M. P. (2008). Site specific bone adaptation response to mechanical loading. Journal of musculoskeletal & neuronal interactions, 8(1), 71-78.
Maimoun, L., Manetta, J., Couret, I., Dupuy, A. M., Mariano-Goulart, D., Micallef, J. P., et al. (2006). The intensity level of physical exercise and the bone metabolism response. International Journal of Sports Medicine, 27(2), 105-111.
Maimoun, L., Mariano-Goulart, D., Couret, I., Manetta, J., Peruchon, E., Micallef, J. P., et al. (2004). Effects of physical activities that induce moderate external loading on bone metabolism in male athletes. Journal of Sports Sciences, 22(9), 875-883.
Malm, H. T., Ronni-Sivula, H. M., Viinikka, L. U., & Ylikorkala, O. R. (1993). Marathon running accompanied by transient decreases in urinary calcium and serum osteocalcin levels. Calcified Tissue International, 52(3), 209-211.
Mouzopoulos, G., Stamatakos, M., Tzurbakis, M., Tsembeli, A., Manti, C., Safioleas, M., et al. (2007). Changes of bone turnover markers after marathon running over 245 km. International Journal of Sports Medicine, 28(7), 576-579.
Mudd, L. M., Fornetti, W., & Pivarnik, J. M. (2007). Bone mineral density in collegiate female athletes: comparisons among sports. Journal of athletic training, 42(3), 403-408.
Nilsson, J., & Thorstensson, A. (1989). Ground reaction forces at different speeds of human walking and running. Acta physiologica Scandinavica, 136(2), 217-227.
Nishiyama, S., Tomoeda, S., Ohta, T., Higuchi, A., & Matsuda, I. (1988). Differences in basal and postexercise osteocalcin levels in athletic and nonathletic humans. Calcified Tissue International, 43(3), 150-154.
30
Nishizawa, Y., Nakamura, T., Ohta, H., Kushida, K., Gorai, I., Shiraki, M., et al. (2005). Guidelines for the use of biochemical markers of bone turnover in osteoporosis (2004). Journal of Bone and Mineral Metabolism, 23(2), 97-104.
Qvist, P., Christgau, S., Pedersen, B. J., Schlemmer, A., & Christiansen, C. (2002). Circadian variation in the serum concentration of C-terminal telopeptide of type I collagen (serum CTx): effects of gender, age, menopausal status, posture, daylight, serum cortisol, and fasting. Bone, 31(1), 57-61.
Riggs, B. L., & Melton, L. J., 3rd. (1995). The worldwide problem of osteoporosis: insights afforded by epidemiology. Bone, 17(5 Suppl), 505S-511S.
Rong, H., Berg, U., Torring, O., Sundberg, C. J., Granberg, B., & Bucht, E. (1997). Effect of acute endurance and strength exercise on circulating calcium-regulating hormones and bone markers in young healthy males. Scandinavian Journal of Medicine and Science in Sports, 7(3), 152-159.
Singh, M. A. (2004). Physical activity and bone health. Australian Family Physician, 33(3), 125.
Takeda, E., Taketani, Y., Sawada, N., Sato, T., & Yamamoto, H. (2004). The regulation and function of phosphate in the human body. BioFactors, 21(1-4), 345-355.
Tanaka, S. M., Li, J., Duncan, R. L., Yokota, H., Burr, D. B., & Turner, C. H. (2003). Effects of broad frequency vibration on cultured osteoblasts. Journal of biomechanics, 36(1), 73-80.
Thorsen, K., Kristoffersson, A., & Lorentzon, R. (1996). The effects of brisk walking on markers of bone and calcium metabolism in postmenopausal women. Calcified Tissue International, 58(4), 221-225.
31
Tosun, A., Bolukbasi, N., Cingi, E., Beyazova, M., & Unlu, M. (2006). Acute effects of a single session of aerobic exercise with or without weight-lifting on bone turnover in healthy young women. Modern rheumatology, 16(5), 300-304.
Turner, C. H. (1998). Three rules for bone adaptation to mechanical stimuli. Bone, 23(5), 399-407.
Viitasalo, J. T., Salo, A., & Lahtinen, J. (1998). Neuromuscular functioning of athletes and non-athletes in the drop jump. European journal of applied physiology and occupational physiology, 78(5), 432-440.
Welsh, L., Rutherford, O. M., James, I., Crowley, C., Comer, M., & Wolman, R. (1997). The acute effects of exercise on bone turnover. International Journal of Sports Medicine, 18(4), 247-251.
Whipple, T. J., Le, B. H., Demers, L. M., Chinchilli, V. M., Petit, M. A., Sharkey, N., et al. (2004). Acute effects of moderate intensity resistance exercise on bone cell activity. International Journal of Sports Medicine, 25(7), 496-501.
Zittermann, A., Sabatschus, O., Jantzen, S., Platen, P., Danz, A., & Stehle, P. (2002). Evidence for an acute rise of intestinal calcium absorption in response to aerobic exercise. European Journal of Nutrition, 41(5), 189-196.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top