跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 16:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃健峻
研究生(外文):Jian-Jiun Huang
論文名稱:氮化鋁鎵/氮化鎵金氧半高電子移動率場效電晶體之製備與特性
論文名稱(外文):Preparation and Characterization of AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistors
指導教授:王永和王永和引用關係
指導教授(外文):Yeong-Her Wang
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:120
中文關鍵詞:陽極氧化法液相沉積法分子束磊晶成長金氧半高電子移動率電晶體氮化鎵
外文關鍵詞:MOSHEMTanodizationGaNMBEliquid phase deposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:0
由於氮化鎵系列材料具有高電子飽和漂移速度、高能隙、直接能隙、高崩潰電場、以及良好的熱導性等優點,因此應用於高電子移動率電晶體(HEMT)等高速、高功率電子元件上已獲得廣泛的研究與良好的成果。但是為了改善高電子移動率電晶體閘極蕭基能障所產生之漏電流,在閘極電極與元件間加一氧化層以形成金屬氧化層-半導體高電子移動率電晶體(金氧半高電子移動率電晶體)成為最有效的方法。
在本論文中,首先將使用分子束磊晶成長機台(MBE)來成長氮化鋁鎵/氮化鎵高電子移動率電晶體之結構。同時使用液相沉積法(LPD)成長二氧化矽以及二氧化鈦等氧化物在元件上,以形成金氧半高電子移動率電晶體,都獲得不錯的電流以及轉導特性,另外本論文也探討有無閘極氧化層對高電子移動率電晶體特性的改善效果。本篇另外ㄧ個重點則是使用陽極氧化法來氧化金屬鎵形成氧化鎵,同時使用不同基版成長溫度,以獲得最佳特性。初期先成長在氮化鎵緩衝層上,並在基版成長溫度為700℃時獲得極小之漏電流1 pA (在-5伏特偏壓)。待以後技術成熟後,將應用在氮化鋁鎵/氮化鎵高電子移動率電晶體上。最後本論文將探討如何使用阻擋層來防止金屬(鋁、金)因為熱製程擴散至氧化層內造成閘極漏電流大幅上昇。本篇著重在砷化鎵元件上,待以後將會往氮化鎵元件方面研究。
總結來說,我們使用不同氧化層製作金氧半高電子移動率電晶體均可獲得比高電子移動率場效電晶體更佳的電流特性。
GaN and related alloys have the many advantages including high saturation electric drift velocity, high and direct bandgap, high breakdown electric field and good thermal conductivity. Due to the material advantages, AlGaN/GaN High electron mobility transistors (HEMTs) have been studied as promising for high-speed and high power electronic devices. However, to improve the leakage current generated by Shottky barrier gate, adding an oxide layer between gate metal and devices is a useful method to form metal-oxide-semiconductor HEMT (MOSHEMT).
In this thesis, using molecular beam epitaxy grows AlGaN/GaN HEMT structure first. Then, the good drain current and maximum transconductance can be obtained by MOSHEMT devices with SiO2 and TiO2 oxide gate by liquid phase deposition (LPD) method. In addition, the method of anodization was used to form the oxide of GaOx, and optimize the best parameter with different substrate temperature. We grow oxide on the template layer and gain the less leakage current 1pA (at -5 V gate bias) with the 700℃ substrate temperature. In the future, we can grow oxide layer on AlGaN/GaN to form MOSHEMT devices. However, the gate leakage current will increase due to the thermal process during the device fabrication. We will research using different barrier layer to stop the metal (Al, Au) from diffusing into oxide layer. In addition, the focus is on the GaAs devices, the GaN devices will investigate in the future.
Summarily, the investigation of the AlGaN/GaN MOSHEMT with different oxide gate was shown in this thesis to obtain the better device current performances than HEMT device.
1 Introduction………………………………………………………1
1.1 Motivation………………………………………………………1
1.2 Organization……………….……………………………………4
2. The film quality of AlGaN/GaN grown by MBE……………7
2.1 Introduction………………………………………………………7
2.2 MBE system…………………………………………………………9
2.3 Measurement system……………………………………………14
2.4 Experiment process and film quality of AlGaN/GaN………18
2.5 Summary……………………………………………………………28
3 The performance of AlGaN/GaN with SiO2 gate oxide by liquid phase deposition……………………………………………33
3.1 Introduction……………………………………………………33
3.2 The processes of liquid phase deposited SiO2…………35
3.3 The DC characteristics of AlGaN/GaN MOSHEMTs…………40
3.4 Summary…………………………………………………………52
4. The performance of AlGaN/GaN with TiO2 gate oxide by liquid phase deposition…………………………………………56
4.1Introduction………………………………………………………56
4.2 The processes of liquid phase deposited TiO2……58
4.3 The DC characteristics of AlGaN/GaN MOSHEMTs………63
4.4 Summary…………………………………………………………70
5. The performance of GaOx/GaN prepared by anodization……74
5.1 Introduction……………………………………………………74
5.2 The process of oxide anodization…………………………76
5.3 The characteristics of GaOx/GaN……………………………78
5.4 Summary……………………………………………………………84
6. Diffusion barrier layers for metal on GaAs native oxide by liquid phase chemical-enhance oxidation…………………87
6.1 Introduction……………………………………………………87
6.2 Experiment process……………………………………………89
6.3 Barrier property of the LPCEO-GaAs oxide film against in-diffusion of metal…………………………………………93
6.4 Summary………………………………………………………112
7. Conclusion……………………………………………………115
7.1 Conclusions……………………………………………………115
7.2 Future works……………………………………………………117
Publication list…………………………………………………118
chapter 1
[1]H. R. Wu, Y. W. Wang and M. P. Houng,” Liquid Phase Deposited SiO2 on GaN and Its Application to MOSFET”, Thesis for Master of Science, Department of Electrical Engineering, National Cheng Kung University, 2001
[2]H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov and M. Burns, “Large-band gap SiC, Ⅲ-Ⅴ nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies”, J. Appl. Phys., vol. 76, p.1363, 1994
[3]S. J. Pearton, GaN AND RELATED MATERIALS, ch. 1. Gordon and Breach Science Publishers
[4]J. I. Pankove, E. A. Miller and J. E. Berkeyheiser, ”GaN electroluminescent diodes”, RCA Rev., vol. 32, p.383, 1971
[5]H. P. Xin, R. J. Welty and C. W. cu, “GaN/sub 0.011/P/sub 0.989/-GaP double-heterostructure red light-emitting diodes directly grown on GaP substructures”, IEEE, Photon. Tech. Lett., vol. 12, iss. 8, p. 960, 2000
[6]J. Edmond, H. kong and V. Dmitrieve, ”Blue/UV emitters from SiC and its alloys”, Inst. Phys. Conf. Ser. 137, p.515, 1994
[7]S. J. Pearton, F. Ren, A. P. Zhang and K. P. Lee, ”Fabrication and performance of GaN electronic devices”, Materials Science and Engineering, R30 p.55, 2000
[8]Y. Uzawa, Z. Wang, A. Osinsky and B. Komiyama, “Submillimeter wave responses in NbN/AlN/NbN tunnel junctions”,Appl. Phys. Lett. 66, p.1992, 1995
[9]T. P. Chow, R. Tyagi, ”Wide bandgap compound semiconductors for superior high-voltage unipolar power devices”, IEEE Trans. Electron. Dev. 41, p.1481, 1994
[10]M. A. Kahn, j. N. Kuznia, A. R. Bhattrai and D. T. Olson, “Metal conacts to gallium nitride”, Appl. Phys. Lett., vol. 62, p.2859, 1993
[11]Z. Z. Bandic, P. M. Bridger, E.C. Piquette, T. C. McGill, R. P. Vaudo, V. M. Phanse and J. M. Redwing, “High voltage (450 V) GaN Schottky rectifiers,” Appl. Phys. Lett. Vol.74, p.1266, 1999.
[12]R. Gaska, J. W. Yang, A. Osinsky, Q. chen, M.A. Khan, A. O. Orlov, G. L. Snider and M. S. Shur, “Electron transport in AlGaN-GaN heterostructures grown on 6H-SiC substrates “, ,Appl. Phys. Lett. Vol. 72, p.707, 1998
[13]J. W. Johnson, B. P. Gila, B. Lou, K. P. Lee and C. R. Abernathy, ” SiO2/Gd2O3/GaN Metal Oxide Semiconductor Field-Effect Transistors”, Journal of The Electrochemical Society, 148(6), pp.303-306, 2001
[14]M. Asif Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska and M. S. Shur, ” AlGaN/GaN Metal Oxide Semiconductor Heterostructure Field Effect Transistor”, IEEE Electron Device Letters, Vol.21, No.2, pp.63-65, 2000
[15]H. C. Casey, G. G. Fountain, R. G. Alley, B. P. Keller and Steven P. DenBaars, ” Low interface trap density for remote plasma deposited SiO2 on n-type GaN”, Appl. Phys. Lett., 68(13), pp.1850-1852, 1996

chapter 2
[1]H. J. Lee, H. Ryu, C. Lee and K. Kim, “Polytypes in GaN films grown by metalorganic chemical vapor deposition on (0 0 0 1) sapphire substrate”, Journal of Crystal Growth, Vol. 191, p. 621-626, 1998
[2]S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, “High dislocation densities in high efficiency GaN-based light-emitting diodes”, Appl. Phys. Lett. 66, p.1249, 1995
[3]A. Y. Cho and J. R. Arthur, “Molecular Beam Epitaxy”, Prog. Solid-State Chem., vol. 10, pp.157, 1975
[4]K. Itaya, M. Onomura, J. Nishio, L. Sugiura, S. Saito, M. Suzuki, J. Rennie, “Room Temperature Pulsed Operation of Nitride Based Multi-Quantum-Well Laser Diodes with Cleaved Facets on Conventional C-Face Sapphire Substrates”, Jpn. J. Appl. Phys. Vol. 35, pp. L1315, 1996
[5]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, “InGaN-Based Multi-Quantum-Well-Structure Laser Diodes”, Jpn. J. Appl. Phys. 35, L74, 1996
[6]S. Nakamura, “InGaN/AlGaN blue-light-emitting diodes”, J. Vac. Sci. Technol. A , vol.13, pp. 705, 1996
[7]J. W. Johnson, A. G. Baca, R. D. Briggs, R. J. Shul, J. R. Wendt, C. Monier, F. Ren, S. J. Pearton, A. M. Dabiran, A. M. Wowchack, C. J. Polley and P. P. Chow, “Effect of gate length on DC performance of AlGaN/GaN HEMTs grown by MBE”, Solid-State Electronics, vol. 45, pp. 1979, 2001
[8]Y. Cordier, M. Hugues, F. Semond, F. Natali, P. Lorenzini, Z. Bougrioua, J. Massies, E. Frayssinet, B. Beaumont, P. Gibart, J..P. Faurie, “Structural and electrical properties of AlGaN/GaN HEMTs grown by MBE on SiC, Si(1 1 1) and GaN templates”, Journal of Crystal Growth, vol.278, pp. 383-386, 2005
[9]D. Korakakis, K. F. Ludwing Jr., T. D. Moustakas, “Long range order in AlxGa1 – xN films grown by molecular beam epitaxy”, Appl. Phys. Lett. Vol.71, pp. 72, 1997
[10] J.R. Gong, M. F. Yeh, C. L. Wang, “Growth and characterization of GaN and AlN films on (1 1 1) and (0 0 1) Si substrates”, Journal of Crystal Growth, Vol. 247, pp. 261-268, 2003
[11]P. Vennegues, B. Beaumont, M. Vaille, and P. Giban, “Microstructure of GaN epitaxial films at different stages of the growth process on sapphire (0 0 0 1)”,J. Cryst. Growth, vol. 173, pp. 249, 1997.
[12]B. Pecz, M. A. di Forte-Poisson, L. Toth, G. Radnoczi, G. Huhn, V. Papaioannou, and J. Stoemenos, “Transmission electron microscopy characterisation of metalorganic chemical vapour deposition grown GaN layers “, Materials Science and Engineering B, vol. 50, pp. 93, 1997.
[13]C. Y. Hwang, M. J. Schurman, W. E. Mayo, Y. C. Lu, R. A. Stall, and T. Salagaj, “Growth and characterisation of GaN epitaxial layers “, J. Electron. Mater. Vol.26, pp. 243, 1997
[14]R. F. Davis, M. J. Paisley, Z. Sitar, D. J. Kester, K. S. Alley, K. Linthicum, L. B. Rowland, S. Tanaka, and R. S. Kern, “Gas-source molecular beam epitaxy of III–V nitrides”, J. Cryst. Growth, vol. 178, pp. 87, 1997.
[15]X. B. Li, D. Z. Sun, M. Y. Kong, and S. F. Yoon, “Structural identification of a cubic phase in hexagonal GaN films grown on sapphire by gas-source molecular beam epitaxy”, J. Cryst. Growth, vol. 183, pp.31, 1998.
[16]P. Ruterana, P. Vermaut, V. Potin, G. Nouet, A. Botchkarev, A. Salvador, and H. Morkoc, “The structure of GaN layers grown on SiC and sapphire by molecular beam epitaxy “, Mater. Sci. Eng. B, vol. 50, pp.72, 1997.
[17]A. Sakai, A. Kimura, H. Sunakawa, and A. Usui, “Microstructure of GaN films on GaAs(1 0 0) substrates grown by hydride vapor-phase epitaxy”, J. Cryst. Growth, vol. 183, pp.49, 1998.
[18]A. A. Yamaguchi, T. Manako, A. Sakai, H. Sunakawa, A. Kimura, M. Nido, and A. Usui, “Single Domain Hexagonal GaN Films on GaAs (100) Vicinal Substrates Grown by Hydride Vapor Phase Epitaxy”, Jpn. J. Appl. Phys. vol. 35, pp. L873, 1996.
[19]A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, “The growth of single crystalline GaN on a Si substrate using AIN as an intermediate layer”, J. Cryst. Growth, vol.128, pp. 391, 1993.
[20]S. N. Basu, T. Lei and T. D. Moustakas, “Microstructures of GaN films deposited on (001) and (111) Si substrates using electron cyclotron resonance assisted-molecular beam epitaxy”, J. Mater. Res. Vol. 9, pp.2370, 1994.
[21]V. Yu. Davydov, N. S. Averkiev, I. N. Goncharuk, D. K. Nelson, I. P. Nikitina, A. S. Polkovnikov, A. N. Smirnov, M. A. Jacobson, and O. K. Semchinova, “Raman and photoluminescence studies of biaxial strain in GaN epitaxial layers grown on 6H–SiC”, J. Appl. Phys. vol. 82, pp. 5097, 1997.
[22]W. Li and A. Li, “Post growth thermal annealing of GaN Grown by RF plasma MBE,” Journal of Crystal Growth, 227-228, p. 415-419, 2001
[23]F. Semond, B. Damilano, S. Vezian, N. Grandjean, M. Leroux and J. Massies, “GaN grown on Si(111) substrate : From two-dimensional growth to quantum well assessment,” Applied Physics Letters, Vol. 75, p. 82-84, 1999
[24]P. Ruterana, M. Albrecht, J. Neugebauer (Eds.), ”Nitride Semiconductors Handbook on Materials and Devices“, WILEY-VCH, 2003, Chapter 3.
[25]J. Hwang, W. J. Schaff, L. F. Eastman, S. T. Bradley, L. Brillson, D. C. Look, J. Wu, W. Walukiewicz, M. Furis and A. N. Cartwright, “Si doping of high-Al-mole fraction AlxGa1–xN alloys with rf plasma-induced molecular-beam-epitaxy”, Applied Physics Letters, Vol. 81, No. 27 , pp. 5192, 2002
[26]R. Averbeck and H. Riechert, “Quantitative Model for the MBE-Growth of Ternary Nitrides”, Phys. Stat. Sol. (a), vol. 176, pp.301, 1999
[27]E. Iliopoulos, K. F. Ludwig Jr., T. D. Moustakas, Ph. Komninou, Th. Karakostas, G. Nouet, S. N. G. Chu, “Epitaxial growth and self-organized superlattice structures in AlGaN films grown by plasma assisted molecular beam epitaxy “, Materials Science and Engineering B, vol. 87, pp. 227, 2001
[28]C. Touzi, F. Omnes, B. El Jani, P. Gibart, “LP MOVPE growth and characterization of high Al content AlxGa1−xN epilayers”, Journal of Crystal Growth, vol.279, pp. 31, 2005

chapter 3
[1]Ren, F., Hong M., Chu, S.N.G., Marcus, M.A., Schurman, M.J., Baca, A., Pearton, S.J., and Abernathy, C.R., “Effect of temperature on Ga2O3(Gd2O3)/GaN metal-oxide-semiconductor field-effect transistors“, Appl. Phys. Lett., vol.73, p.3893, 1998
[2]M. Hong, K. A. Anselm, J. Kwo, H. M. Ng, J. N. Baillargeon, A. R. Kortan., J. P. Mannaerts, A. Y. Cho, C. M. Lee,J. I. Chyi and T. S. Lay, “Properties of Ga2O3(Gd2O3)/GaN metal-insulator-semiconductor diodes”, J. Vac. Sci. Technol. B, 18(3), p.1453, 2000
[3]H. C. Casey, G. G. Fountain, R. G. Alley, B. P. Keller, and S. P. DenBaars, ”Low interface trap density for remote plasma deposited SiO2 on GaN,” Appl. Phys. Lett. , vol. 68, p.1850, 1996
[4]T. Homma, K. Katoh, Y. Yamada, and Y. Murao, ”A Selective SiO2 Film-Formation Technology Using LPD for Fully Planarized Multilevel interconnections”, J. Electrochem. Soc., vol. 140, No. 8, p.2410, 1993
[5]J.J. Huang, P.W. Sze, W.C. Lai, Y.H. Wang, and M.P. Houng, “AlGaN/GaN MOSHFET with a SiO2 gate by liquid phase deposition,” Physical Scripta, vol.T114, pp94-97, 2004
[6]S.J. Pearton, F. Ren, A.P. Zhang and K.P. Lee, “ Fabrication and performance of GaN electronic devices”, materials Science and Engineering, R30, pp.55-212, 2000
[7]Y. Uzawa, Z. Wang, A. Osinsky and B. Komiyama, “Submillimeter wave responses in NbN/AlN/NbN tunnel junctions”, Appl. Phys. Lett. Vol.66, pp.1992-1994, 1995
[8]T. P. Chow, R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices”, IEEE Trans. Electron. Dev. 41, p.1481-1493, 1994
[9]J. S. Foresi and T. D. Moustakas, “ Metal contacts to gallium nitride” , Appl. Phys. Lett., Vol.62, pp.2859-2861, 1993
[10]Y. F. Wu, S. Keller, P. Kozodoy, B. P. Keller, P. Parikh, D. Kapolnek and S. P. Denbaars, ” Bias Dependent Microwave Performance of AlGaN/GaN MODFET’s Up To 100V”, IEEE Electron Device Letter, Vol.18, No. 6, pp.290-292, June 1997
[11]M. P. Houng, C. J. Huang, Y.H. Wang, N. F. Wang and W. J. Chang “Extremely low temperature formation of silicon dioxide on gallium arsenide”, J. Appl. Phys., vol.82, p.5788, 1997
[12]M. P. Houng, Y. H. Wang, C. J. Huang, S. P. Huang, and J. H. Horng, “Quality optimization of liquid phase deposition SiO2 films on gallium arsenide”, Solid-State Electronics, vol.44, p.1917, 2000
[13]W. S. Lu and J. G. Hwu, ” Reliable fluorinated thin gate oxides prepared by liquid phase deposition following rapid thermal process”, IEEE Electron Device Letters, Volume: 17 Issue: 4, P. 172, April, 1996
[14]J. L. Yeh and S. C. Lee, ” Amorphous-silicon thin-film transistor with liquid phase deposition of silicon dioxide gate insulator”, IEEE Electron Device Letters , vol. 20, iss. 3, p. 138, March, 1999
[15]Yu-Ju Lin; Chih-Chieh Yeh; Li-Ming Huang; Ten-Chin Wen; Yeong-Her Wang, “Plasma Treatment on the Plastic Substrates for Liquid Phase Deposited SiO2 Films for Flexible Electronics Applications’, Solid-State and Integrated Circuit Technology, 2006. ICSICT '06. 8th International Conference on 23-26 Oct. 2006 Page(s):893 – 895
[16]Hasina F. Huq, Syed K. Islam, “AlGaN/GaN self-aligned MODFET with metal oxide gate for millimeter wave application”, Microelectronics Journal, 37, 579-582, 2006
[17]Hnin Yu Yu Ko, Minoru Mizuhat, Akihiko Kajinami, Shigehito Deki, “The dispersion of Au nanoparticles in SiO2/TiO2 layered films by the liquid phase deposition (LPD) method”, Thin Solid Films, 491, 86-90, 2005
[18]M. A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang and M. S. Shur, “AlGaN/GaN Metal Oxide Semiconductor Heterostructure Field Effect Transistor”, IEEE Electron Device Letters, vol. 21, no. 2, pp. 63, 2000

chapter 4
[1]J.J. Huang, P.W. Sze, W.C. Lai, Y.H. Wang, and M.P. Houng, “AlGaN/GaN MOSHFET with a SiO2 gate by liquid phase deposition,” Physical Scripta, vol. T114, pp94-97, 2004
[2]S. Yagi, M. Shimizu, M. Inada, Y. Yamamoto, G. Piao, H. Okumura, Y. Yano, N. Akutsu, H. Ohashi, “High breakdown voltage AlGaN/GaN MIS–HEMT with SiN and TiO2 gate insulator”, Solid-State Electronics, 50, pp.1057–1061, 2006
[3]Y. C. Chang, Y. J. Lee, Y. N. Chiu, T. D. Lin, S. Y. Wu, H. C. Chiu, J. Kwo, Y. H. Wang, M. Hong, “MBE grown high k dielectrics Ga2O3(Gd2O3) on GaN,” Journal of Crystal Growth, vol. 301-302, pp. 390-393, 2007
[4]V. Fuflyigin, A. Osinsky, F. Wang, P. Vakhutinsky, and P. Norris, “Growth of ferroelectric oxide films on n-GaN/c-sapphire structures,” Applied Physics Letters, vol.76, pp.1612, 2000
[5]Huang, G.S.; Lu, T.C.; Kuo, H.C.; Wang, S.C.; Hou-Guang Chen, “Fabrication of Microcavity Light-Emitting Diodes Using Highly Reflective AlN–GaN and Ta2O 5–SiO2 Distributed Bragg Mirrors”, Photonics Technology Letters, IEEE, vol. 19, pp. 999, 2007
[6]P. D. Ye, B. Yang, K. K. Ng, J. Bude, G. D. Wilk, S. Halder, and J. C. M. Hwang, “GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric,” Applied Physics Letters, vol. 86, pp. 063501, 2005.
[7]Y. C. Chang, H. C. Chiu, Y. J. Lee, M. L. Huang, K. Y. Lee, and M. Hong, Y. N. Chiu, J. Kwo and Y. H. Wang, “Structural and electrical characteristics of atomic layer deposited high K HfO2 on GaN”, Applied Physics Letters, vol. 90, pp. 232904, 2007
[8]P. J. Hansen, V. Vaithyanathan, Y. Wu, T. Mates, S. Heikman, U. K. Mishra, R. A. York, D. G. Schlom, J. S. Speck “Rutile films grown by molecular beam epitaxy on GaN and AlGaN/GaN,” Journal of Vacuum Science & Technology B, vol. 23, pp. 499-506, 2005.
[9]S. Yagi, M. Shimizu, M. Inada, Y. Yamamoto, G. Piao, H. Okumura, Y. Yano, N. Akutsu, H. Ohashi, “High breakdown voltage AlGaN/GaN MIS–HEMT with SiN and TiO2 gate insulator,” Solid-state Electronics, vol. 50, pp. 1057-1061, 2006.
[10]S. Deki, Y. Aoi, O. Hiroi, and A. Kajinami, “Titanium (IV) oxide thin film s prepared from aqueous solution.” Chemistry Letters, vol. 25, pp. 433-434, 1996
[11]M. K. Lee, H. C. Lee, and C. M. Hsu, “Characteristics of liquid-phase-deposited TiO2 film on hydrogenated amorphous silicon,” Japanese Journal of Applied Physics, vol. 45, pp. 7617-7620, 2006.
[12]H. R. Wu, K. W. Lee, T. B. Nian, D. W. Chou, J. J. Huang Wu, Y. H. Wang, M. P. Huang, P. W. Sze, Y. K. Su, S. J. Chang, C. H. Ho, C. I. Chiang, Y. T. Chern, F. S. Juang, T. C. Wen, W. I. Lee and J. I. Chyi., “Liquid phase deposited SiO2 on GaN,” Materials Chemistry and Physics, vol. 80, pp. 329-333, 2003.
[13]S. Basu, P. K. Singh, J. J. Huang, and Y. H. Wang, “Liquid Phase Deposition of Al2O3 Thin Films on GaN,” Journal of Electrochemical Society, vol. 154, pp. H1041-H1046, 2007
[14]Y. Gao, Y. Masuda, T. Yonezawa, and K. Kuomoto, “Site-selective deposition and micropatterning of SrTiO3 thin film on self-assembled monolayers by liquid phase deposition method,” Chem. Mater., vol. 14, pp. 5006-5014, 2002.
[15]D. K. Schroder, Semiconductor material and device characterization, John Wiley: New York, 1998.
[16]S. Oyama, T. Hashizume, and H. Hasegawa, “Mechanism of current leakage through metal/n-GaN interfaces,” Applied Surface Science, vol. 190, pp. 322-325, 2002.
[17]M. A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska, and M. S. Shur, “AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor,” IEEE Electron Device Letters, vol. 21, pp. 63-65, 2000.
[18]P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. DenBaars, and U. K. Mishra, “Electrical characterization of GaN p-n junctions with and without threading dislocations,” Appl. Phys. Lett., vol. 73, pp. 975-977, 1998.
[19]H. Kim, J. Lee, D. Liu, and W. Lu, “Gate current leakage and breakdown mechanism in unpassivated AlGaN/GaN high electron mobility transistors by post-gate annealing,” Appl. Phys. Lett., vol. 86, pp. 143505-1-143505-3, 2005.

chapter 5
[1]G. Eftekhari, “Characterization of thin Si02 grown by rapid thermal processing as influenced by processing parameters,” J. Electrochem. Soc., vol. 140, no. 3, pp. 787, 1993.
[2]W. S. Lu, K. C. Lin, and J. G. Hwu, “Process dependent of radiation hardness of rapid thermal reoxidized nitrided gate oxides,” IEEE Trans. Electron Devices, vol. 40, no. 9, pp. 1597, 1993.
[3]G. W. Yoon, A. B. Joshi, J. Kim, G. Q. Lo, and D. L. Kwong, “Effects of growth temperature on TDDB characteristics of N2O-growth oxides,” IEEE Electron Device Lett., vol. 13, no. 12, pp. 606, 1992.
[4]R. Moazzami and C. Hu, “A high-quality stacked thermal/LPCVD gate oxide technology for ULSI,” IEEE Electron Device Lett., vol. 14, no.2, pp. 72, 1993
[5]P. Morfouli and G. Pananakakis, “Electrical study of thin Si02 layers obtained by anodic oxidation of p-type silicon in pure water using I-U, C-U, and G-U measurements,” Phys. Stat. Sol., vol. 11 1, pp. 529, 1989.
[6]A. G. Revesz, “Anodic oxidation of silicon in KN03-Nmethylacetamide solution: Interface property,” J. Electrochem. Soc., vol. 114, no. 6, pp. 629, 1967.
[7]Ming-Jer Jeng and Jenn-Gwo Hwu,” Thin-Gate Oxides Prepared by Pure Water Anodization Followed by Rapid Thermal Densification”, IEEE Electron Device Lett., VOL. 17, NO. 12, pp. 575, 1996
[8]W. H. Chang, C. H. Lee, P. Chang, Y. C. Chang, Y. J. Lee, J. Kwo, C. C. Tsai, J. M. Hong, C. H. Hsu and M. Hong,” High k dielectric single-crystal monoclinic Gd2O3 on GaN with excellent thermal, structural, and electrical properties”, Journal of Crystal Growth, vol. 311, pp. 2183, 2009
[9]Shigeo Ohira, Naoki Arai, Takayoshi Oshima and Shizuo Fujita, “Atomically controlled surfaces with step and terrace of b-Ga2O3 single crystal substrates for thin film growth”, Applied Surface Science, vol. 254, pp. 7838, 2008
[10]Y. C. Chang, Y. J. Lee, Y. N. Chiu, T. D. Lin, S. Y. Wu, H. C. Chiu, J. Kwo, Y. H. Wang, M. Hong, “MBE grown high k dielectrics Ga2O3(Gd2O3) on GaN”, Journal of Crystal Growth, vol. 301–302, pp.390, 2007
[11]Y.C. Chang, H.C. Chiu, Y.J. Lee, M.L. Huang, K.Y. Lee, M. Hong, Y.N. Chiu, J. Kwo, Y.H. Wang, “Structural and electrical characteristics of atomic layer deposited high HfO2 on GaN”, Appl. Phys. Lett. vol.90, pp. 232904, 2007
[12]Y. Q. Wu, P. D. Ye, G.. D. Wilk and B. Yang, “GaN metal-oxide-semiconductor field-effect-transistor with atomic layer deposited Al2O3 as gate dielectric”, Mater. Sci. Eng. B, vol.135, pp.282, 2006.
[13]J. Kim, R. Mehandru, B. Luo, F. Ren, B.P. Gila, A.H. Onstine, C.R. Abernathy, S.J. Pearton, Y. Irokawa, “Inversion behavior in Sc2O3/GaN gated diodes”, Appl. Phys. Lett. vol. 81, pp. 373, 2002
[14]J. W. Johnson, B. Luo, F. Ren, B. P. Gila, W. Krishnamoorthy, C. R. Abernathy, S. J. Pearton, J. I. Chyi, T. E. Nee, C. M. Lee and C. C. Chuo, “Gd2O3 /GaN metal-oxide-semiconductor field-effect transistor”, Appl. Phys. Lett. vol. 77, pp. 3230, 2000
[15]F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton and C. R. Abernathy, “Effect of temperature on Ga2O3(Gd2O3)/GaN metal–oxide–semiconductor field-effect transistors, “Appl. Phys. Lett., vol. 73, pp. 3893, 1998

chapter 6
[1]J. V. Dilorenzo and D. D. Khandelwal, “GaAs FET Principles and Technology” Artech House, Washington, 1985
[2]K. Wang, R.X. Wang, S. Fung, C.D. Beling, X.D. Chen, Y. Huang, S. Lia, S.J. Xu, M. Gong,” Film thickness degradation of Au/GaN Schottky contact characteristics”, Materials Science and Engineering B, vol. 117, pp.21-25, 2005
[3]C. K. Tan, A. Abdul Aziz, F.K. Yam, “Schottky barrier properties of various metal (Zr, Ti, Cr, Pt) contact on p-GaN revealed from I–V–T measurement”, Applied Surface Science , vol. 252, pp.5930-5935, 2006
[4]C. R. M. Grovenor: Microelectronic Materials. Bristol and Philadelphia: Institute of Physics Publishing; 1989, ch5.
[5]H. H. Wang, C. J. Huang, Y. H. Wang, and M. P. Houng,”Liquid Phase chemical-enhanced oxidation for GaAs operated near room temperature”, Jpn. J. Appl. Phys., Part 2, vol. 37, L67, 1998.
[6]H. H. Wang, J. Y. Wu, Y. H. Wang, and M. P. Houng, “Effects of pH values on the kinetics of liquid phase chemical-enhanced oxidation of GaAs”, J. Electrochem. Soc. Vol. 146, p. 2328, 1999
[7]H. H. Wang, D. W. Chou, J. Y. Wu, Y. H. Wang, and M. P. Houng, “Properties of GaAs oxides prepared by liquid phase chemical-enhanced technique”, J. Appl. Phys. Vol. 87, pp. 2629, 2000.
[8]S. K. Ghandhi, “VLSI Fabrication Principles: Silicon and Gallium Arsenide” Wiley, New York, 1994.
[9]D. W. Chou, H. H. Wang, Y. H. Wang and M. P. Houng, “Electrical Properties of liquid phase oxidized GaAs oxide layers“, Materials Chemistry and Physics, vol. 78, pp. 772-777, 2003
[10]M. F. Zhu, A. H. Hamdi, M-A. Nicolet and J. Tandon, “Stable ohmic contact to GaAs with TiN diffusion barrier”, Thin Solid Film, vol. 119, pp.5-9, 1984
[11]R. D. Remba, I. Suni and M-A. Nicolet, “Use of a TiN barrier to improve GaAs FET ohmic contact reliability,” IEEE Elec. Dev. Lett., vol. 6, pp. 437-438, 1985.
[12]W. C. Huang, T. F. Lei and C. L. Lee, “Pd-Ge contact to n-GaAs with the TiW diffusion barrier,” J. Elec. Mat., vol. 23, pp. 397-401, 1994.
[13]C. Y. Chai, J. A. Huang, Y. L. Lai, J. W. Wu, C. Y. Chang, Y. J. Chan, and H. C. Cheng, “Excellent Au/Ge/Pd ohmic contacts to n-type GaAs using Mo/Ti as the diffusion barrier,” Jpn. J. Appl. Phys., vol. 35. pp. 2110-2111, 1996.
[14]D. S. Gardner, J. Onuki, K. Kudoo and Y. Misawa, “Encapsulated copper interconnection devices using sidewell barrier,” IEEE V-MIC Proc., pp. 99-108, 1991.
[15]R. Wenzel, F. Goesmann and R. Schmid-Fetzer, “Diffusion barriers in gold-metallized titanium-based contacts on SiC,” J. Mater. Sci.: Mater. in Electronics, vol. 9, pp. 109-113, 1998.
[16]H. H. Wang, “Investigation of Liquid Phase Chemical-Enhanced Oxidation Technique for GaAs and Its Application”, Ph.D. dissertation, National Cheng-Kung University, Taiwan, Republic of China, 2000
[17]C. J. Liu and J. S. Chen, “Interdiffusions and Reactions in Cu/TiN/Ti/Thermal SiO2 and Cu/TiN/Ti/Hydrogen Silsesquioxane Multilayer Structures “, J. Electrochem. Soc. 2002; 149: G455.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 利用閘極掘入方式製作增強型高截止電壓氮化鋁鎵/氮化鎵/氮化鋁鎵金屬-絕緣體-半導體高電子遷移率電晶體之研究
2. 氮化鋁鎵/氮化鎵高電子遷移率場效電晶體元件結構與鈍化方式對高頻率及高功率之特性分析
3. 高頻及高功率氮化鋁鎵/氮化鎵高電子遷移率電晶體製作與分析
4. 以光電化學氧化法成長氮化鋁鎵/氮化鎵金屬-氧化物-半導體高速電子移動率場效電晶體閘極氧化層之製作與研究
5. 高壓氮化鋁鎵/氮化鎵高電子遷移率電晶體製作與分析
6. AlGaN/GaN高電子遷移率電晶體(HEMTs)直流電性測試
7. 氮化鋁鎵/氮化鎵高電子移導率電晶體製作於矽基板與藍寶石基板之特性比較與應用電路
8. 電場板技術在氮化鋁鎵/氮化鎵高電子移導率場效電晶體之研製與應用
9. 使用氮化鎢閘極之氮化鋁鎵/氮化鎵高電子遷移率電晶體之高溫應用
10. 液相成長三氧化二鋁薄膜及其在氮化鎵和砷化鎵系列金氧半結構高電子遷移率電晶體的應用
11. 氮化鋁鎵/氮化鎵高電子遷移率場效電晶體特性研究
12. 氮化鋁鎵/氮化鎵高電子遷移率功率電晶體應用於切換式直流對直流升壓轉換器之研究
13. 氮化鋁鎵/氮化鎵高電子移導率場效電晶體之製作與應用
14. 氮化鋁鎵/氮化鎵系高電子移動率電晶體之電特性與低頻雜訊之分析
15. 氮化鎵異質結構場效電晶體之研究