跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/12 01:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏志泓
研究生(外文):Chih-Hung Yen
論文名稱:磷化鋁鎵銦系列發光二極體及砷化鎵系列光電開關元件之研究
論文名稱(外文):Investigation of AlGaInP-based Light-Emitting Diodes and GaAs-based Optoelectronic Switching Devices
指導教授:郭德豐劉文超劉文超引用關係
指導教授(外文):Der-Feng GuoWen-Chau Liu
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:149
中文關鍵詞:光電開關氧化銦錫調變摻雜磷化鋁鎵銦發光二極體砷化鎵射極薄化
外文關鍵詞:LEDITOmodulation dopedemitter edge-thinningGaAsOptoelectronic switchAlGaInP
相關次數:
  • 被引用被引用:0
  • 點閱點閱:467
  • 評分評分:
  • 下載下載:73
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,我們成功地以低壓有機金屬化學汽相沉積法(LP-MOCVD)研製以磷化鋁鎵銦(AlGaInP)材料系統為基礎之發光二極體(LEDs)。吾人將提出三項關於磷化鋁鎵銦系發光二極體亮度提升及製程改善之研究,量測並討論其光與電特性之改善成果;另外,並將針對兩種以砷化鎵(GaAs)材料系統為基礎之光電開關元件深入探討其操作原理與應用。
於磷化鋁鎵銦發光二極體的研究範疇中,首先我們提出以n型調變摻雜(modulation doped)位障層於磷化鋁鎵銦發光二極體多重量子井中,經由更多電子注入,增加電子捕捉率,提高光輸出效率。經由此n型調變摻雜,光流明效率在20毫安培注入電流下可提升10.7%;在相同範圍的注入電流測試中,亦可以發現此n型調變摻雜位障層磷化鋁鎵銦發光二極體存在較小波長變化量與較低的接面溫度變異結果,而元件可靠度衰減程度幾乎與未摻雜元件相同。
其次,我們研究不同種類表面歐姆接觸層對氧化銦錫(ITO)電流擴散層於磷化鎵窗層上的影響,研究發現經由碳摻雜磷化鎵歐姆接觸層相較於習知p型砷化鎵歐姆接觸層,於20毫安培操作下,元件輸出功率可提升11%。第三個研究為一種具有直接歐姆接觸在p型磷化鎵窗層與氧化銦錫界面的製程方法,於本研究中並無習知砷化鎵歐姆接觸層的存在,我們利用金/金鈹金屬藉由熱退火程序,使其金鈹原子在磷化鎵窗層表面形成具金屬特性之薄膜層,降低磷化鎵與氧化銦錫接觸產生之接面能障;另外,該元件在氧化銦錫直接歐姆接觸於磷化鎵窗層下,除亮度具明顯提升外,在稍大電流(20毫安培)元件可靠度測試下,亦未有明顯衰減情形發生。
另一方面,本文亦將研究一種具有寬能隙集極結構與具有射極薄化結構之異質接面雙極性電晶體式之光電開關元件,此兩種元件結構主要為由砷化鋁鎵/砷化鎵材料所組成,經由不同的結構設計與製程改善方法,該兩種元件均具有優異之開關元件特性要求表現—如高交換電壓(switching voltage)、保持電壓(holding voltage)、保持電流(holding current)及低的交換電流(switching current),這是由於元件操作在順向偏壓之下,因為電子電洞對正回授效應導致元件發生累增崩潰因而產生負微分電阻現象所致;此外,該元件也同時具有良好之雙極性電晶體特性。
In this dissertation, we have successfully fabricated and demonstrated AlGaInP-based light-emitting diodes (LEDs). Three approaches related to how to promote the brightness and process method improved for AlGaInP LEDs are presented and discussed. In addition, two GaAs-based optoelectronic switches, a wide-gap collector optoelectronic switch and a double heterostructure-emitter optoelectronic switch with an emitter edge-thinning design are also investigated and discussed.
In respect of research on AlGaInP LEDs, we have proposed an n-type modulation doped (MD) barrier layers on multi-quantum wells (MQWs) to improve luminous efficiency. The MD-MQW structure can provide a larger number of mobile electrons in the well and a smaller electron thermal velocity, in which increases the recombination rate and has the effect of reducing series resistance. Thus, reduction of junction heating in the MQWs is obtained. It was found that the luminous efficiency of the n-type MD-MQW LED improved that of un-doped MQW LED by about 10.7% at an injection current of 20 mA. In addition, the n-type MD-MQW LEDs exhibited a smaller wavelength variation and a smaller junction temperature variation under the same operation current regime. Moreover, the brightness reliability of this MD-MQW LED is found to be comparable to the undoped-MQW LED.
Then, we investigated the effect of different Ohmic contact layer structure applied to ITO-assisted on GaP window layer of AlGaInP LEDs. By selecting the C-doped GaP layer as Ohmic contact layer, the light-output power was significantly increased by a factor of 11% than conventional p-GaAs contact layer structure under DC 20-mA operation. The third approach is about the concept of an ITO direct Ohmic contact structure on GaP window layer. The direct Ohmic contact structure is performed by the deposition of an AuBe diffused thin layer and the following activation process on the surface of a Mg-doped GaP window layer. The presence of this thin AuBe diffused layer yields the Be dominant metallic surface layer and significantly reduces the barrier height between the ITO and p-GaP layer. Via the modification of contact structure, not only the brightness was significantly increased but the reliability was comparable to the conventional LED without this structure.
Two-terminal switching performances are observed in HBTs device with a wide-gap collector and a double heterosturcture-emitter optoelectronic switch, respectively. These two devices consist of AlGaAs/GaAs materials. Through different structural design and process method improvement, these two devices show that increasing of the switching voltage VS, holding voltage VH, holding current IH and the switching current IS decreasing under illumination situation. The switching action takes place from a low current state to a high current state through a region of NDR which is due to the avalanche multiplication process. Furthermore, the switch with an emitter edge-thinning design also exhibits better transistor characteristics.
Chapter 1. Introduction 1
1.1 Brief History of Light-Emitting Diodes (LEDs 1
1.2 Brief History of Heterojunction Bipolar Transistors (HBTs) 2
1.3 Brief History of Negative Differential Resistance (NDR) Devices 4
1.4 Organization of this Dissertation 6

Chapter 2. Epitaxy System and Characterization Instruments 9
2.1 MOCVD Epitaxy System 9
2.1.1 Importance of MOVPE System 10
2.1.2 MOVPE System 10
2.1.3 Mechanism of MOVPE Reaction 12
2.2 Characterization Instruments 14
2.2.1 High resolution x-ray diffraction (HRXRD) 14
2.2.2 Photoluminescence (PL) 16

Chapter 3. Improvement of Optical and Electrical Characteristics in AlGaInP-Based Light-Emitting Diodes (LEDs) 17
3.1 An AlGaInP-Based LED with a Modulation-Doped Multi-Quantum Well (MD-MQW) Structure 18
3.1.1 Motivation 18
3.1.2 Experimental Details 19
3.1.3 Optical and Electrical Characterization 20
3.1.4 Junction Temperature Analysis 23
3.1.5 Reliability 25
3.1.6 Summary 26
3.2 An AlGaInP-Based Multiple-Quantum-Well Light Emitting Diode with a Thin Carbon-Doped GaP Contact Layer Structure 26
3.2.1 Introduction 26
3.2.2 Experimental Details 27
3.2.3 Optical and Electrical Characterization 29
3.2.4 Summary 33
3.3 An AlGaInP-Based Light Emitting Diode with an Indium-Tin-Oxide (ITO) Direct Ohmic Contact Structure 33
3.3.1 Motivation 34
3.3.2 Experimental Details 35
3.3.3 Optical and Electrical Characterization 36
3.3.4 Reliability 39
3.3.5 Summary 41

Chapter 4. Investigation of Optoelectronic Switching Devices Based on Heterostructure Bipolar Transistors (HBTs) 43
4.1 Introduction 43
4.2 Characteristics of an n-p-n Heterostructure Optoelectronic Switch with a Wide-Gap Collector Layer 44
4.2.1 Introduction 44
4.2.2 Device Structure and Material Growth 45
4.2.3 Experimental Results and Discussion 46
4.2.4 Summary 49
4.3 Characteristics of Double Heterostructure-Emitter Bipolar Transistors 50
4.3.1 Introduction 50
4.3.2 Theoretical Considerations and Modeling 51
4.3.3 Experiments 58
4.3.4 Results and Discussion 58
4.3.5 Summary 63

Chapter 5. Conclusions and Prospects 65
5.1 Conclusions 65
5.2 Prospects 67

Bibliography 70
1.W. C. Hsu, H. M. Shieh, M. J. Kao, R. T. Hsu, and Y. H. Wu, “On the improvement of gate voltage swings in δ-doped GaAs/InxGa1-xAs/GaAs pseudomorphic heterostructures,” IEEE Trans. Electron Devices, vol. 40, pp. 1630-1635, 1993.
2.W. H. Chiou, H. J. Pan, R. C. Liu, C. Y. Chen, C. K. Wang, H. M. Chuang, and W. C. Liu, “Characterization of InP/InGaAs double-heterojunction bipolar transistors with tunnelling barriers and composite collector structures,” Semicond. Sci. Technol, vol. 17, pp. 87-92, 2002.
3.W. C. Liu, H. J. Pan, W. C. Wang, K. B. Thei, K. W. Lin, K. H. Yu, and C. C. Cheng, “Temperature-dependent study of a lattice-matched InP/InGaAlAs heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 21, pp. 524-527, 2000.
4.C. Y. Chen, S. Y. Cheng, W. H. Chiou, H. M. Chuang, R. C. Liu, C. H. Yen, J. Y. Chen, C. C. Cheng, and W. C. Liu, “DC Characterization of an InP/InGaAs tunneling emitter bipolar transistor (TEBT),” IEEE Trans. Electron Devices, vol. 50, pp. 874-879, 2003.
5.W. S. Lour, “High-gain, low offset voltage, and zero potential spike by InGaP/GaAs δ-doped single heterojunction bipolar transistor (δ-SHBT),” IEEE Trans. Electron Devices, vol. 44, pp. 346-348, 1997.
6.K. H. Yu, H. M. Chuang, K. W. Lin, C. C. Cheng, J. Y. Chen, and W. C. Liu, “Improved temperature-dependent performances of a novel InGaP/InGaAs/GaAs double channel pseudomorphic high electron mobility transistor (DC-PHEMT),” IEEE Trans. Electron Devices, vol. 49, pp. 1687-1693, 2002.
7.C. S. Lee, W. C. Hsu, J. C. Huang, Y. J. Chen, and H. H. Chen, “Monolithic AlAs-InGaAs-InGaP-GaAs HRT-FETS with PVCR of 960 at 300K,” IEEE Electron Device Lett., vol. 26, pp. 50-52, 2005.
8.W. C. Liu, W. L. Chang, W. S. Lour, H. J. Pan, W. C. Wang, J. Y. Chen, K. H. Yu, and S. C. Feng, “High-performance InGaP/InxGa1-xAs HEMT with an inverted delta-doped V-shaped channel structure,” IEEE Electron Device Lett., vol. 20, pp. 548-550, 1999.
9.W. S. Lour, W. L. Chang, Y. M. Shih, and W. C. Liu, “New self-aligned T-gate InGaP/GaAs field-effect transistors grown by LP-MOCVD,” IEEE Electron Device Lett., vol. 20, pp. 304-306, 1999.
10.H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu, and W. C. Liu, “Investigation of a new InGaP/InGaAs pseudomorphic double doped-channel heterostructure field-effect transistor (PDDCHFET),” IEEE Trans. Electron Device, vol. 50, pp. 1717-1723, 2003.
11.K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Select. Topics Quantum Electron., vol. 8, pp. 321-332, March/April, 2002.
12.D. A. Vanderwater, I. H. Tan, G. E. Hofler, D. C. DeFevere, and F. A. Kish, “High-brightness AlGaInP light emitting diodes,” IEEE Proc., vol. 85, pp. 1752-1764, 1997.
13.T. Kim, P. O. Leisher, A. J. Danner, R. Wirth, K. Streubel, and K. D. Choquette, “Photonic crystal structure effect on the enhancement in the external quantum efficiency of a red LED,” IEEE Photon. Technol. Lett., vol. 18, pp. 1876–1878, Sep. 2006.
14.X. Y. Sun, R. Bommerna, D. Burckel, A. Frauenglass, N. Fairchild, S. R. J. Bryeck, G. A. Garrett, M. Wraback, and S. D. Hersee, “Defect reduction mechanisms in the nanoheteroexpitaxy of GaN on SiC,” J. Appl. Phys., vol. 95, pp. 1450-1454, 2004.
15.T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, “III-nitride blue and ultraviolet photonic crystal lighting emitting diode,” Appl. Phys. Lett., vol. 84, pp. 466-468, 2004.
16.C. Y. Lee, M. C. Wu, Y. D. Tian, W. H. Wang, W. J. Ho, and T. T. Shi, “Effects of rapid thermal annealing on InAsP/InP strained multiquantum well laser diodes grown by metal organic chemical vapor deposition,” Electron. Lett., vol. 36, pp.1026 -1028, 2000.
17.C. M. Lee, C. C. Chuo, J. F. Dai, X. F. Zheng, and J. I. Chyi, “Temperature dependence of the radiative recombination zone in GaN/InGaN multiple quantum well light emitting diodes,” J. Appl. Phys., vol. 89, pp. 6554-6556, 2001.
18.J. I. Chyi, “MBE growth and characterization of InGaAs quantum dot lasers,” Mater. Sci. Technol B, vol. 75, pp. 121-125, 2000.
19.P. H. Lei, C. C. Lin, W. J. Ho, M. C. Wu, and L. W. Laih, “1.3-μm n-type modulation-doped AlGaInAs/AlGaInAs strain-compensated multiple quantum well laser diodes,” IEEE Trans. Electron Devices, vol. 49, pp. 1129-1135, 2002.
20.P. W. Liu, G. H. Liao, and H. H Lin, “1.3 μm GaAs/GaAsSb quantum well laser grown by solid source molecular beam epitaxy,” Electron. Lett., vol. 40, pp. 177 -179, 2004.
21.W. C. Liu, J. H. Tsai, W. S. Lour, L. W. Laih, S. Y. Cheng, K. B. Thei, and C. Z. Wu, “A novel InGaP/GaAs S-shaped negative-differential-resistance (NDR) switch for multiple-valued logic applications,” IEEE Trans. Electron Devices, vol. 44, pp. 520-525, 1997.
22.K. H. Wu, Y. K. Fang, J. J. Ho, W. T. Hsieh, and T. J. Chen, “Novel SiC/Si heterostructure negative-differential-resistance diode for use as switch with high on/off current ratio and low power dissipation,” IEEE Electron Device Lett., vol. 19, pp. 294-296, 1998.
23.D. F. Guo, J. Y. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A double-barrier-emitter triangular-barrier optoelectronic switch,” IEEE J. Quantum Electron., vol. 40, pp. 413- 419, 2004.
24.H. C. Wei, Y. H. Wang, and M. P. Houng, “N-shaped negative differential resistance in a transistor structure with a resistive gate,” IEEE Trans. Electron Devices, vol. 41, pp. 1327-1333, 1994.
25.W. C. Liu, W. C. Wang, H. J. Pan, J. Y. Chen, S. Y. Cheng, K. W. Lin, K. H. Yu, K. B. Thei, and C. C. Cheng, “Multiple-route and multiple-state current-voltage characteristics of an InP/AlInGaAs switch for multiple-valued logic applications,” IEEE Trans. Electron Devices, vol. 47, pp. 1553-1559, 2000.
26.W. C. Liu, L. W. Laih, C. Z. Wu, S. Y. Cheng, and J. H. Tsai, “Observation of the multiple negative-differential-resistance of metal-insulator-semiconductor-like structure with step-compositioned InxGa1-xAs quantum wells,” IEEE Electron Device Lett., vol. 18, pp. 129-131, 1997.
27.W. C. Liu, J. H. Tsai, L. W. Laih, C. Z. Wu, K. B. Thei, W. S. Lour, and D. F. Guo, “Heterostructure confinement effect on the negative-differential-resistance (NDR) bipolar transistor,” Superlattices and Microstructures, vol. 17, pp. 445-456, 1995.
28.J. H. Tsai, “Application of an AlGaAs/GaAs/InGaAs heterostructure emitter for a resonant-tunneling transistor,” Appl. Phys. Lett., vol. 75, pp. 1668–1670, 1999.
29.W. C. Liu, L. W. Laih, S. Y. Cheng, W. L. Chang, W. C. Wang, J. Y. Chen, and P. H. Lin, “Multiple negative-differential-resistance (MNDR) phenomena of a metal-insulator-semiconductor-insulator-metal-like (MISIM) structure with step-compositioned InxGa1-xAs quantum wells,” IEEE Trans. Electron Devices, vol. 45, pp. 373-379, 1998.
30.W. C. Liu, D. F. Guo, S. R. Yih, J. T. Liang, L. W. Laih, and G. M. Lyuu, “GaAs-InGaAs quantum-well resonant-tunneling switching device grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 64, pp. 2685-2687, 1994.
31.N. Holonyak, S. F. Jr., and Bevacqua, “Coherent (visible) light emission from Ga(As1–xPx) junctions,” Appl. Phys. Lett., vol. 1, pp. 82-84, 1962.
32.R. A. Logan and F. K. Reinhart, “GaAs-InGaAs quantum-well resonant-tunneling switching device grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 44, pp. 4172-4174, 1973.
33.W. O. Groves, A. H. Herzog, and M. G. Craford, “The effect of nitrogen doping on GaAs1−xPx electroluminescent diodes,” Appl. Phys. Lett., vol. 19, pp. 184-186, 1971.
34.Zh. I. Alferov, V. M. Andreev, D. Z. Garbuzov, and V. D. Rumyantsev, “Growth of quantum-well heterostructures by liquid phase epitaxy,” Sov.Phys.-Semicond. (Engl. Transl.), vol. 9, pp. 305-309, 1975.
35.J. Nishizawa, and K. Suto, “Minority-carrier lifetime measurements of efficient GaAlAs p-n heterojunctions,” J. Appl. Phys., vol. 48, pp. 3484-3495, 1977.
36.C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford and V. M. Robbins, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett., vol. 57, pp. 2937-2939, 1990.
37.H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes,” Appl. Phys. Lett., vol. 58, pp. 1010-1012, 1991.
38.F. A. Kish., F. M. Steranka, D. C. Defevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, and M. G. Craford, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 2839-2841, 1994.
39.J. I. Pankove, E. A. Miller, J. E. Breheyheiser, “GaN blue light-emitting diodes,” J. Luminescence., vol. 5, pp. 84-86, 1972.
40.H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett., vol. 48, pp. 353-355, 1986.
41.H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys., vol. 28, pp. L2112-L2114, 1989.
42.S. Nakamura, T. Mukari, M. Senoh, and N. Jwasa, “Hole compensation mechanism of p-type GaN films,” Jpn. J. Appl. Phys., vol. 31, pp. 1258-1266, 1992.
43.S. Nakamura and T. Mukai, “High-quality InGaN films grown on GaN films,” Jpn. J. Appl. Phys., vol. 31, pp. L457-L459, 1992.
44.P. Kung, C. J. Sun, A. Saxler, H. Ohsato, and M. Razeghi, “Crystallography of epitaxial growth of wurtizite-type thin films on sapphire substrate,” J. Appl. Phys., vol. 75, pp. 4515-4519, 1994.
45.S. Tanaka, M. Takeuchi, and Y. Aoyagi, “Anti-surfactant in Ⅲ-nitride epitaxy-quantum dot formation and dislocation termination,” Jpn. J. Appl. Phys., vol. 39, pp. L831-L834, 2000.
46.O. Moriwaki, T. someya, K. Tachibana, S. Ishida, and Y. Arakawa, “Narrow photoluminescence peaks from localized states in InGaN quantum dot structures,” Appl. Phys. Lett., vol. 76, pp. 2361-2363, 2000.
47.W. Schockley, “Circuit elements utilizing semiconductor material,” U. S. Patent, N. 2569, p.347, 1951.
48.H. Kromer, “Theory of a wide-gap emitter for transistors,” Proc. IRE., pp. 1535-1537, 1957.
49.W. P. Dumke, J. M. Woodal, and V. L. Rideout, “GaAs-GaAlAs hetrojunction transistor for high frequency operation,” Solid-State Electron. vol. 15, pp. 1339-1343, 1972.
50.M. Hafizi, “Recent progress in InP-based HBT technology,” 22nd Int. Symp. Compound Semiconductor, Cheju Island, Korea, pp.631-636, 1995.
51.B. Agarwal, D. Mensa, R. Pullela, Q. Lee, U. Bhattacharya, L. Samoska, J. Guthrie, and M. J. W. Rodwell, “A 277 GHz fmax transferred-substrate heterojunction bipolar transistors,” IEEE Electron Device Lett., vol. 18, pp. 228-231, 1997.
52.M. T. Fresina, “Design and fabrication of high-performance indium gallium phosphide/gallium arsenide heterojunction bipolar transistors,” Ph D. Thesis, University of Illinois, 1996.
53.C. R. Bolognesi, N. Matine, X. Xu, J. Hu, M. W. Dvorak, S. P. Watkins, and M. L. W. Thewalt, “Low-offset NpN InP/GaAsSb/InP double heterojunction bipolar transistors with abrupt interfaces and ballistically launched collector electrons,” IEEE Device Resarch Conference, Charlotteville, VA June 22-24, 1998.
54.E. Alekseev and D. Pavlids, “DC and high frequency perfoemance of AlGaN/GaN heterojunction bipolar transistors,” Solid-State Electron., vol. 44, pp. 245-252, 2000.
55.W. C. Liu and W. S. Lour, “An improved heterostructure-emitter bipolar transistors (HEBT),” IEEE Electron Device Lett., vol. 12, pp. 474-476, 1991.
56.W. C. Liu, W. S. Lour, and D. F. Guo, “A new AlGaAs/GaAs double heterostructure-emitter bipolar transistor prepared by molecular beam epitaxy,” Appl. Phys. Lett., vol. 60, pp. 362-364, 1992.
57.H. H. Lin and S. C. Lee, “Super-gain AlGaAs/GaAs heterojunction bipolar transistors using an emitter-thinning design,” Appl. Phys. Lett., vol. 47, pp. 839-841, 1985.
58.W. C. Liu, D. F. Guo and W. S. Lour, “AlGaAs/GaAs double heterostructure-emitter bipolar transistor (DHEBT),” IEEE Trans. Electron Devices, vol. 39, pp. 2740-2744, 1992.
59.H. R. Chen, C. Y. Chang, C. P. Lee, C. H. Huang, J. S. Tsang, and K. L. Tsai, “High current gain, low offset voltage heterostructure emitter bipolar transistors,” IEEE Electron Device Lett., vol. 15, pp. 336-338, 1994.
60.S. Y. Cheng, H. J. Pan, Y. H. Shie, J. Y. Chen, W. L. Chang, W. C. Wang, P. H. Lin, and W. C. Liu, “Influence of ��-doping sheet and setback layer on the performance of InGaP/GaAs heterojunction bipolar transistor,” Semicond. Sci. Technol., vol. 13, pp. 1187-1192, 1998.
61.W. C. Liu, S. Y. Cheng, W. L. Chang, H. J. Pan, and Y. H. Shie, “Application of ��-doped wide-gap collector structure for high-breakdown and low-offset voltage transistors,” Appl. Phys. Lett., vol. 73, pp. 1397-1399, 1998.
62.K. Kurishima, H. Nakajima, T. Kobayashi, Y. Matsuoka, and T. Ishibashi, “High-speed InP/InGaAs double-heterostructure bipolar transistors with suppressed collector current blocking,” Appl. Phys. Lett., vol. 62, pp. 2372-2374, 1993.
63.E. F. Chor and C. J. Peng, “Composite step-graded collector of InP/InGaAs DHBT for minimised carrier blocking,” IEE Electron. Lett., vol. 32, pp.1409-1410, 1996.
64.J. C. Vlcek and C. G. Fonstad, “Multiply-graded InGaAlAs heterojunction bipolar transistors,” IEE Electron. Lett., vol. 27, pp.1213-1215, 1991.
65.C. Nguyen, T. Liu, M. Chen, H. C. Sun, and D. Rensch, “AlInAs/GaInAs/InP double heterojunction bipolar transistor with a novel base-collector design for power applications,” IEEE Electron Device Lett., vol. 17, pp. 133-135, 1996.
66.G. W. Taylor, J. G. Simmons, A. Y. Cho, and R. S. Mand, “A new double heterostructure opto-electronic switching device using molecular beam epitaxy,” J. Appl. Phys., vol. 59, pp. 596-600, 1986.
67.W. C. Liu, H. J. Pan, W. C. Wang, S. C. Feng, K. W. Lin, K. H. Yu, and L. W. Laih, “On the multiple negative-differential-resistance (MNDR) InGaP/GaAs resonant tunneling bipolar transistors,” IEEE Trans. Electron Devices, vol. 48, pp. 1054–1059, 2001.
68.Y. K. Fang, C. R. Liu, K. H. Chen, and J. D. Hwang, “A silicon double switching inversion-controlled switch for multiple-valued logic applications,” IEEE Trans. Electron Devices, vol. 40, pp. 918–922, 1993.
69.D. F. Guo, “An optoelectronic switch based on a triangular-barrier structure,” IEEE J. Quantum Electron., vol. 34, pp. 1882–1885, 1998.
70.J. Morton, “From Physics to Function,” IEEE Spectrum, vol. 62, pp.134-139, 1965.
71.D. F. Guo, L. W. Laih, J. H. Tsai, W. C. Liu, and W. C. Hsu, “Characteristics of a GaAs-InGaAs quantum-well resonant-tunneling switch,” J. Appl. Phys., vol. 77, pp. 2782-2785, 1995.
72.W. C. Liu, L. W. Laih, W. S. Lour, J. H. Tsai, K. W. Lin, and C. C. Cheng, “Multiple-route current-voltage (I-V) characteristics of GaAs/InGaAs metal-insulator semiconductor-like (MIS) structure for multiple-valued logic applications,” IEEE J. Quantum Electron., vol. 32, pp. 1615-1619, 1996.
73.W. C. Wang, H. J. Pan, K. B. Thei, K. W. Lin, K. H. Yu, C. C. Cheng, L. W. Laih, S. Y. Cheng, and W. C. Liu, “Observation of resonant tunneling effect and temperature dependent characteristics of an InP/InGaAs heterojunction bipolar transistor,” Semicond. Sci. Technol., vol. 15, pp. 935-940, 2000.
74.S. Y. Cheng, W. C. Liu, W. L. Chang, H. J. Pan, W. C. Wang, J. Y. Chen, S. C. Feng, and K. H. Yu, “Observation of the impulse-like negative-differential-resistance of superlattice resonant-tunneling transistor,” Appl. Phys. Lett., vol. 75, pp. 133-135, 1999.
75.D. F. Guo, “A new AlGaAs/GaAs/InAlGaP npn bulk-barrier optoelectronic switch,” IEEE Electron Device Lett., vol. 24, pp. 162-164, 2003.
76.D. F. Guo, J. Y. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “Characteristics of a new BBOS with an AlGaAs/δ(n+)/GaAs/InAlGaP collector structure,” IEEE Trans. Electron Devices, vol. 51, pp. 542-547, 2004.
77.W. C. Hsu, W. C. Liu, D. F. Guo, and W. S. Lour, “GaAs/lnGaAs double delta-doped quantum-well switching device prepared by molecular beam epitaxy,” Appl. Phys. Lett. vol. 62, pp.1504-1506, 1993.
78.M. C. Wu and W. T. Tsang, “Quantum-switched heterojunction bipolar transistor,” Appl. Phys. Lett. vol. 55 no.17, pp.1771-1773, 1989.
79.W. C. Liu, C. Y. Sun, and D. F. Guo, “Regenerative switching properties of a sawtooth-doping-superlattice-collector bipolar transistor,” Appl. Phys. Lett., vol. 61, pp. 471-473, 1992.
80.T. B. Boykin, R. C. Bowen, G. Klimeck, and K. L. Lear, “Resonant-tunneling diodes with emitter prewells,” Appl. Phys. Lett., vol. 75, pp. 1302-1304, 1999.
81.A. R. Mirabedini, L. J. Mawst, and D. Botez, “High peak-current-density strained-layer In0.3Ga0.7As/Al0.8Ga0.2As resonant tunneling diodes grown by metal-organic chemical vapor deposition,” Appl. Phys. Lett., vol. 70, pp. 2867-2869, 1997.
82.D. Caputo and G. de Cesare, “A switching device based on a-Si:H n-i-δp-i-n stacked structure: modeling and characterization,” IEEE Trans. Electron Devices, vol. 43, pp. 2109-2112, 1996.
83.K. Board and M. Darwish, “Properties of a bulk semiconductor barrier with minority carrier injection,” Solid-State Electron., vol. 25, 529-535, 1982.
84.N. Shimizu, T. Nagatsuma, M. Shinagawa, and T. Waho, “Picosecond-switching time of In0.53Ga0.47As/AlAs resonant-tunneling diodes measured by electro-optic sampling technique,” IEEE Electron Device Lett., vol. 16, pp. 262-264, 1995.
85.S. Hutchinson, M. Carr, R. Gwilliam, M. J. Kelly, and B. J. Sealy, “Effect of proton isolation on DC and RF performance of GaAs planar doped barrier diodes,” Electron. Lett., vol. 31, pp. 583-585, 1995.
86.A. Mccowen, S. B. H. Shaari, and K. Board, “Transient analysis of a triangular-barrier bulk unipolar diode,” IEE Proceedings, vol. 135, pp. 107-112, 1988.
87.H. Sakata, Y, Nagao, and Y. Matsushima, “Symmetric triangular-barrier optoelectronic switch (S-TOPS) by gas source MBE,” J. Cryst. Growth, vol. 175/176, pp. 1259-1264, 1997.
88.D. F. Guo, C. C. Cheng, K. W. Lin, W. C. Liu, and W. Lin, “A multiple-negative- differential-resistance switch with double InGaP barriers,” Appl. Phys. Lett., vol. 69, pp. 4185-4187, 1996.
89.S. J. Kovacic, B. J. Robinson, J. G. Smmons, and D. A. Thompson, “InP/InGaAsP double-heterostructure optoelectronic switch,” IEEE Electron Device Lett., vol. 14, pp. 54-56, 1993.
90.F. Y. Huang and H. Morkoc, “GaAs/InGaAs/AlGaAs optoelectronic switch in avalanche heterojunction phototransistor vertically integrated with a resonant cavity,” Appl. Phys. Lett., vol. 64, pp. 405–407, 1994.
91.G. W. Taylor, J. G. Simmons, A. Y. Cho, and R. S. Mand, “A new double heterostructure optoelectronic switching device using molecular beam epitaxy,” J. Appl. Phys., vol. 59, pp. 596–600, 1986.
92.G. W. Taylor, R. S. Mand, J. G. Simmons, and A. Y. Cho, “Optically induced switching in a p-channel double heterostructure optoelectronic switch,” Appl. Phys. Lett., vol. 49, pp. 1406–1408, 1986.
93.C. R. Abernathy, F. Ren, S. J. Pearton, T. R. Fullowan, R. K. Montgomery, P. W. Wisk, J. R. Lothian, P. R. Smith, and R. N. Nottenburg, “Growth of GaAs/AlGaAs HBTs by MOMBE (CBE),” J. Cryst. Growth, vol. 120, pp. 234-239, 1992.
94.M. Razeghi, P. Maurel, M. Defour, F. Omnes, G. Neu, and A. Kozachi, “Very high purity InP epilayer grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 52, pp. 117-119, 1988.
95.H. P. Meier, R. F. Broom, P. W. Epperlein, S. Hausser, A. Jakubowicz, and W. Walter, “Growth investigations of 1.3 μm GaInAsP/InP MQW laser diodes grown by chemical beam epitaxy,” J. Cryst. Growth, vol. 127, pp. 165-168, 1993.
96.A. W. Nelson, W. J. Devlin, R. E. Hobbs, C. G. D. Lenton, and S. Wong, “High-power, low-threshold BH lasers operation at 1.25 μm grown entirely by MOVPE,” IEE Electron. Lett., vol. 121, pp. 888-889, 1985.
97.M. R. Leys, “Fundamental growth kinetics in MOMBE/CBE, MBE and MOVPE,” J. Cryst. Growth, vol. 209, pp. 225-231, 2000.
98.K. F. Jensen, D. I. Fotiadis, and T. J. Mountziaris, “Detailed models of MOVPE process,” J. Cryst. Growth, vol. 107, pp. 1-11, 1991.
99.H. M. Manasevit and W. I. Simpson, “The use of metal-organics in the preparation of semiconductor materials: I. Epitaxial III-V gallium compounds,” J. Electrochem Soc., vol. 116, pp. 1725-1732, 1969.
100.G. B. Stringfellow, “Organometallic vapor phase epitaxy: theory and practice,” Chap. 2 Academic Press, San Diego, CA, 1989.
101.H. Compton, “The intensity of X-ray reflection, and distribution of the electrons in atoms,” Phys Rev., vol. 19, pp. 29-57, 1917.
102.G. Bauer and W. Richter, “Optical characterization of epitaxial semiconductor layers,” Springer press, 1996.
103.W. C. Peng and Y. S. Wu, “High-power AlGaInP light-emitting diodes with metal substrate fabricated by wafer bonding,” Appl. Phys. Lett., vol. 84, pp. 1841-1843, 2004.
104.D. P. Bour and J. R. Shealy, “Organometallic vapor phase epitaxial growth of (AlxGa1-x)0.5In0.5P and its heterostructures,” IEEE J. Quantum Electron., vol. 24, pp. 1856-1863, 1988.
105.S. Minagawa and H. Kakibayashi, “Observation of OMVPE grown GaInP/GaAs cross-sections by transmission electron microscopy,” Jpn. J. Appl. Phys, vol. 24, pp. 1569-1570, 1985.
106.C. H. Chen, S. A. Stockman, M. J. Peanasky, and C. P. Kuo, “OMVPE growth of AlInGaP for high-efficiency visible light emitting diodes,” in High-Brightness Light-Emitting Diodes, vol. 48, Semiconductors and Semimetals, G. B. Stringfellow and M. G. Craford, Eds. New York: Academic, 1997.
107.M. R. Karmes, M. Ochiai-Holocomb, G. E. Hofler, C. Carter-Coman, E. I. Chen, I. H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. W. Huang, S. A. Stockman, F. A. Kish, M. G. Graford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Saseer, and D. Collins, “High-power truncated-inverted-pyramid (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett., vol. 75, pp. 2365-2367, 1999.
108.R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiestel, D. Zipperer, G. H. Dohler, B. Duta, M. Kuijk, G. Borghs, and P. Heremaans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett., vol. 79, pp.1-3, 2001.
109.F. A. Kish, D. A. Vanderwater, D. C. DeFevere, D. A. Steigerward, G. E. Hofler, K. G. Park, and F. M. Steranka, “Highly reliable and efficient semiconductor wafer-bonded AlGaInP/GaP light-emitting diodes,” Electron. Lett., vol. 32, pp.132-134, 1996.
110.R. M. Fletcher, C. P.Kuo, T. D. Osentowski, K. H. Huang, M. C. Craford, and V. M. Robbins, “The growth and properties of high performance AlGaInP emitters using a lattice mismatched GaP window layer,” J. Electron. Mater., vol. 20, pp. 1125–1130, 1991.
111.C. Rooman, R. Windisch, M. D’Hondt, B. Dutta, P. Modak, P. Mijlemans, G. Borghs, R. Vounckx, I. Moerman, M. Kuijk, and P. Heremans, “High-efficiency thin-film light-emitting diodes at 650 nm,” Electron. Lett., vol. 37, pp. 852-853, 2001.
112.Y. Hosokawa, W. Nabekura, T. Koshina, R. Takeuchi, K. Sakaue, and T. Udagawa, “High-power Ohmic-electrodes dispersive AlGaInP double-hetero structure yellowish-green light-emitting diodes,” J. Cryst. Growth, vol. 221, pp. 652-656, 2000.
113.C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, and M. G. Craford, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett. vol. 57, pp. 2937-2939, 1990.
114.K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, M. G. Craford, and A.S. H. Liso, “Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555-620 nm spectral region using a thick GaP window layer,” Appl. Phys. Lett., vol. 61, pp. 1045-1047, 1992.
115.H. Sugawara and M. Ishikawa, “Compensated-strain multiquantum-well active layer for InGaAlP-based visible light emitting diodes,” Appl. Phys. Lett. vol. 62, pp. 3074-3076, 1993.
116.C. Y. Lee, M. C. Wu, and W. Lin, “The influence of window layer on the performance of 650 nm AlGaInP/GaInP multi-quantum-well light-emitting diodes,” J. Cryst. Growth, vol. 200, pp. 382-390, 1999.
117.P. H. Lei, C. C. Lin, W. J. Ho, M. C. Wu, and L.W. Laih, “1.3-µm n-type modulation-doped AlGaInAs/AlGaInAs strain-compensated multiple quantum-well laser diodes,” IEEE Trans. Electron Devices, vol. 49, pp. 1129–1135, 2002.
118.H. Shimimizu, K. Kumada, N. Yamanaka, N. Iwai, T. Mukaihara, and A. Kasukawa, “1.3-µm InAsP n-type modulation doped MQW lasers,” IEEE J. Quantum Electron., vol. 36, pp. 728–735, 2000.
119.K. Nakahara, K. Uomi, T. Tsuchiya, A. Niwa, T. Haga, and T. Taniwatari, “1.3 µm InGaAsP-InP n-type modulation-doped strained multiquantum-well lasers,” IEEE J. Select. Topics Quantum Electron., vol. 3, pp. 166-172, 1997.
120.T. Yamamoto, T. Watanabe, S. Ide, K. Tanaka, H. Nobuhara, and K. Wakao, “Low-threshold current density 1.3-µm strained-layer quantum-well laser using n-type modulation doping,” IEEE Photon. Technol. Lett., vol. 6, pp. 1165-1166, 1994.
121.A. Kasukawa, T. Namegaya, T. Fukushima, N. Iwai, and T. Kikuta, “1.3 µm InAsyP1-y-InP strained-layer quantum-well laser diodes grown by metalorganic chemical vapor deposition,” IEEE J. Quantum Electron., vol. 29, pp. 1528-1535, 1993.
122.Y. K. Su, H. C. Wang, C. L. Lin, W. B. Chen, and S. M. Chen, “AlGaInP light emitting diode with a modulation-doped superlattice,” Jpn. J. Appl. Phys, vol. 42, pp. L571-L573, 2003.
123.S. A. Levetas and M. J. Godfrey, “Calculation of capture of carriers by quantum wells,” Phys. Rev. B Condens. Matter, vol. 59, pp. 10202–10207, 1999.
124.C. Y. Lee, M. C. Wu, H. P. Shiao, and W. J. Ho, “Temperature dependence of photoluminescence from InAsP/InP strained quantum well structures grown by metalorganic chemical vapor deposition,” J. Cryst. Growth, vol. 208, pp. 137-144, 2000.
125.C. C. Liu, W. T. Wang, M. P. Houng, Y. H. Wang, and S. M. Chen, “Titanium nitride as spreading layer for AlGaInP visible LEDs,” IEEE Photon. Technol. Lett., vol. 14, pp. 1665–1667, 2002.
126.J. Y. Su, H. C. Wang, W. B. Chen, S. M. Chen, M. C. Wu, H. H. Chen, and Y. K. Su, “Improved 634 nm MQW AlGaInP LEDs performance with novel tensile strain barrier reducing layer,” IEEE Trans. Electron Devices., vol. 50, pp. 2388–2392, 2003.
127.J. Y. Su, W. B. Chen, M. C. Wu, and Y. K. Su, “AlGaInP light-emitting diode with tensile strain barrier reducing layer,” IEEE Electron Devices Letters, vol. 24, pp. 159-161, 2003.
128.Y. Li, W. Fang, W. Liu, H. Liu, C. Mo, L. Wang, and F. Jiang, “Study of polarization field in GaN-based blue LEDs on Si and sapphire substrate by electroluminescence,” J. Luminescence, vol. 222, pp. 567-570, 2007.
129.Y. K. Su, S. J. Chang, L. W. Ji, C. S. Chang, L. W. Wu, W. C. Lai, T. H. Fang, and K. T. Lam, “ InGaN/GaN blue light-emitting diodes with self-assembled quantum dots,” Semicond. Sci. Technol., vol.19, pp. 389-392, 2004.
130.H. C. Wang, Y. K. Su, Y. H. Chung, C. L. Lin, W. B. Chen, and S. M. Chen, “AlGaInP light emitting diode with a current-blocking structure,” Solid-State Electron., vol. 49, pp. 37-41, 2005.
131.R. H. Horng, S. H. Huang, D. S. Wuu, and Y. Z. Jiang “Characterization of large-area AlGaInP/Mirror/Si light-emitting diodes fabricated by wafer bonding,” Jpn. J. Appl. Phys, vol. 43, pp. 2510-2514, 2004.
132.R. H. Horng, C. E. Lee, C. Y. Kung, S. H. Huang, and D. S. Wuu, “High-power AlGaInP light-emitting diodes with patterned copper substrates by electroplating,” Jpn. J. Appl. Phys, vol. 43, pp. L576-L578, 2004.
133.S. Todoroki, M. Sawai, and K. Aiki, “Temperature distribution along the striped active region in high-power GaAlAs visible lasers,” J. Appl. Phys. vol. 58, no. 3, pp.1124-1128, 1985.
134.P. W. Epperlein and G. L. Bona, “Influence of the vertical structure on the mirror facet temperatures of visible GaInP quantum well lasers,” Appl. Phys. Lett., vol. 62, pp. 3074-3076, 1993.
135.S. Murata and H. Nakada, “Adding a heat bypass improves the thermal characteristics of a 50 µm spaced 8-beam laser diode array,” J. Appl. Phys., vol. 72, pp. 2514-2516, 1985.
136.S. Shhajed, Y. Xi, Y.-L. Li, T. H. Gessmann, and E. F. Schubert, “Influence of junction temperature on chromaticity and color-rendering properties of trichromatic white-light sources based on light-emitting diodes,” J. Appl. Phys. vol. 97, pp. 054506-1-054506-8, 2005.
137.P. Altieri-Weimar, A. Jaeger, T. Lutz, P. Stauss, K. Streubel, K. Thonke, and R. Sauer, “ Influence of doping on the reliability of AlGaInP LEDs,” J. Mater. Sci: Mater. Electron, 2008 02.
138.P. N. Grillot, M. R. Krames, Z. Hanmin, and S. H. Teoh, “Sixty thousand hour light output reliability of AlGaInP light emitting diodes,” IEEE Trans. Device and Materials Reliability, vol. 6, pp. 564-574, 2006.
139.T. Gessmann and E. F. Schubert, “High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications,” J. Appl. Phys., vol. 95, pp. 2203–2216, 2004.
140.R. M. Fletcher, K. H. Huang, C. P. Kuo, J. Yu, and T. D. Osentowski, “Light-emitting diode with a thick transparent layer,” U.S. Patent 5 233 204, 1993.
141.H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAlP-GaAs visible light-emitting diodes,” Appl. Phys. Lett., vol. 58, pp. 1010-1012, 1991.
142.C. H. Chen, M. Hargis, J. M. Woodall, M. R. Melloch, J. S. Reynolds, E. Yablonovitch, and W. Wang “GHz bandwidth GaAs light-emitting diodes,” Appl. Phys. Lett., vol. 74, pp. 3140-3142, 1999.
143.Y. H. Aliyu, D. V. Morgan, H. Thomas, and S.W. Bland, “AlGaInP LEDs using reactive thermally evaporated transparent conducting indium tin oxide (ITO),” Electron. Lett., vol. 31, pp. 2210-2212, 1995.
144.D. V. Morgan, I. M. Al-Ofi, and Y. H. Aliyu, “Indium tin oxide spreading layers for AlGaInP visible LEDs,” Semicond. Sci. Technol., vol. 15, pp. 67-72, 2000.
145.J. F. Lin, M. C. Wu, M. J. Jou, C. M. Chang, B. J. Lee, and Y. T. Tsai, “Highly reliable operation of indium tin oxide AlGaInP orange light-emitting diodes,” Electron. Lett., vol. 30, pp. 1793-1794, 1994.
146.R. H. Horng, Y. C. Lien, W. C. Peng, D. S. Wuu, C. Y. Tseng, C. H. Shieh, M. F. Huang, S. J. Tsai, and J. S. Liu, “High-brightness wafer-bonded Indiun-Tin Oxide/light-emitting diode/Mirror/Si,” Jpn. J. Appl. Phys, vol. 40, pp.2747-2751, 2001.
147.Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett., vol. 17, pp. 2289-2291, 2005.
148.Y. J. Lee, T. C. Lu, H. C. Kuo, S. C. Wang, M. J. Liou, C.W. Chang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B J Lee, “High brightness AlGaInP-based light emitting diodes by adopting the stripe-patterned omni-directional reflector,” Semicond. Sci. Technol., vol. 21, pp. 184-189, 2006.
149.J. M. Zhang, D. S. Zou, X. Chen, W. L. Guo, Y. X. Zhu, T. Liang, X. L. Da, J. J. Li, and G. D. Shen, “AlGaInP thin-film LED with omni-directionally reflector and ITO transparent conducting n-type contact,” Chinese Phys., vol. 16, pp. 3948-3951, 2007.
150.H. C. Wang, Y. K. Su, C. L. Lin, W. B. Chen, S. M. Chen, and W. L. Li, “Improvement of AlGaInP multiple-quantum-well light-emitting diodes by modification of Ohmic contact layer,” Jpn. J. Appl. Phys, vol. 43, pp.1934-1936, 2004.
151.G. B. Stringfellow and M. G. Craford, “High brightness light-emitting diodes,” Semiconductors and Semimetals, New York, Academic, 1997, vol. 48.
152.I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, “Ultra-high spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures,” Appl. Phys. Lett., vol. 62, pp. 131–133, 1993.
153.F. A. Kish, F. M. Steranka, D. C. Defevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1-x)0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 2839–2841, 1994.
154.H. P. Xin, R. J. Welty, and C. W. Tu, “GaN0.011P0.989-GaP double-heterostructure red light-emitting diodes diretly grown on GaP substrate,” IEEE Photon. Technol. Lett., vol. 12, pp. 960-962, 2000.
155.P. Vitta and A. Žukauskas, “Thermal characterization of light-emitting diodes in the frequency domain,” Appl. Phys. Lett., vol. 93, pp. 103508–103510, 2008.
156.T. Yamaguchi and T. Niina, “A high brightness GaP multicolor LED,” IEEE Trans. Electron Devices, vol. 28, pp. 588-592, 1981.
157.S. C. Hsu, D. S. Wuu, C. Y. Lee, J. Y. Su, and R. H. Horng, “High-efficiency 1-mm2 AlGaInP LEDs sandwiched by ITO omni-directional reflector and current-spreading layer,” IEEE Photon. Technol. Lett. vol. 19, pp. 492-494, 2007.
158.S. J. Chang, W. C. Lai, J. F. Chen, S. C. Chen, B. R. Huang, C. H. Liu, and U. H. Liaw, “Be diffusion in GaN,” J. Mater. Characterization, vol. 49, pp. 337-341, 2003.
159.T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren, “Indium tin oxide contacts to gallium nitride optoelectronic devices,” Appl. Phys. Lett., vol. 74, pp. 3930-3932, 1999.
160.O. Pursiainen, N. Linder, A. Jaeger, R. Oberschmid, and K. Streubel, “Identification of aging mechanisms in the optical and electrical characteristics of light-emitting diodes,” Appl. Phys. Lett., vol. 79, pp. 2895-2897, 2001.
161.K. Streubel, N. Linder, R. Wirth, and A. Jaeger, “High brightness AlGaInP light-emitting diodes,” IEEE J. Select. Topics Quantum Electron., vol. 8, pp. 321-332, 2002.
162.S. L. Chuang, A. Ishibashi, S. Kijima, N. Nakayama, M. Ukita, and S. Taniguchi, “Kinetic model for degradation of light-emitting diodes,” IEEE J. Quantum Electron., vol. 33, pp. 970-979, 1997.
163.W. S. Lour, W. C. Liu, J. H. Tsai, and L.W. Laih, “High-performance camel-gate field effect transistor using high-medium-low doped structure,” Appl. Phys. Lett., vol. 67, pp. 2636-2638, 1995.
164.J. H. Tsai, L.W. Laih, H. J. Shih, W. C. Liu, and H. H. Lin, “On the recombination currents effect of heterostructure-emitter bipolar transistors (HEBTs),” Solid-State Electron., vol. 39, pp. 1723-1730, 1996.
165.R. C. Liu, and W. C. Liu, “Comparison of surface recombination effect in GaAs-based heterostructure-emitter and heterostructure-base transistor (HEHBT’s),” Microelectronic Reliability, vol. 38, pp. 361-365, 1998.
166.W. L. Chang, S. Y. Cheng, Y. H. Shie, H. J. Pan, W. S. Lour, and W. C. Liu, “On the n+-GaAs/��(p+)-GaInP/n-GaAs high breakdown voltage field-effect transistor,” Semicond. Sci. Technol., vol. 14, pp. 307-311, 1999.
167.S. Y. Cheng, W. C. Liu, W. L. Chang, H. J. Pan, W. C. Wang, J. Y. Chen, S. C. Feng, and K. H. Yu, “Observation of the impulse-like negative-differential resistance of superlatticed resonant-tunneling transistor,” Appl. Phys. Lett., vol. 75, pp. 133-135, 1999.
168.W. C. Liu, W. C. Wang, H. J. Pan, J. Y. Chen, S. Y. Cheng, K. W. Lin, K. H. Yu, K. B. Thei, and C. C. Cheng, “Multiple-route and multiple-state current-voltage characteristics of an InP/AlInGaAs switch for multiple-valued logic applications,” IEEE Trans. Electron Devices, vol. 47, pp. 1553-1559, 2000.
169.D. F. Guo, J. Y. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “Characteristics of a new BBOS with an AlGaAs-��(n+)-GaAs-InAlGaP collector structure,” IEEE Trans. Electron Devices, vol. 51, pp. 542-547, 2004.
170.H. Opper, J. Cai, R. B. Garber, R. Basilica, and G. W. Taylor, “Characterization of the switching parameters in the dual-channel double Heterostructure Optoelectronic switch,” IEEE Trans. Electron Devices, vol. 51, pp. 1091-1094 2004.
171.G. W. Taylor, H. Opper, J. Cai, B. Garber, and R. Basilica, “Derivation of the switch-on parameters in the dual channel double heterostructure optoelectronic switch,” J. Appl. Phys., vol. 96, pp. 7612-7624, 2004.
172.D. F. Guo, “A Schottky-contact triangular-barrier optoelectronic switch (STOS),” IEEE Electron Device Lett., vol. 27, pp. 37-39, 2006.
173.S. J. Kovacic, B. J. Robinson, J. G. Simmons, and D. A. Thompson, “InP/InGaAsP double-heterostructure optoelectronic switch,” IEEE Electron Device Lett., vol. 14, pp. 54-56, 1993.
174.F. Y. Huang and H. Morkoc, “GaAs/InGaAs/AlGaAs optoelectronic switch in avalanche heterojunction phototransistor vertically integrated with a resonant cavity,” Appl. Phys. Lett., vol. 64, pp. 405-407, 1994.
175.G. W. Taylor, D. L. Crawford, and J. G. Simmons, “Optoelectronic dynamic random access memory cell utilizing a three-terminal N-channel self-aligned double-heterostructure optoelectronic switch,” Appl. Phys. Lett., vol. 54, pp. 543-545, 1989.
176.B. Kallback, and H. Beneking, in High-Speed Electronics, 1986, 204.
177.K. Hara, K. Kojima, K. Mitsunaga, and K. Kyuma, “AlGaAs-GaAs pnpn differential optical switch,” IEEE J. Quantum Electron., vol. 28, pp. 1335-1342 1992.
178.D. F. Guo, “Illumination effect on switching performance of a triangular-barrier resonant-tunnelling diode,” IEE Proc.-Optoelectronics, vol. 148, pp. 121-123 2001.
179.P. Papadopoulou, N. Georgoulas, and A. Thanailakis, “Simulation and experimental results on the switching behaviour of bulk-barrier diodes,” Microelectron. J., vol. 33, pp. 487-494, 2002.
180.S. B. Hwang, Y. K. Fang, K. H. Chen, C. R. Liu, J. D. Hwang, and M. H. Chou, “An a-Si:H/a-Si,Ge:H bulk barrier phototransistor with a-SiC:H barrier enhancement layer for high-gain IR optical detector,” IEEE Trans. Electron Devices, vol. 40, pp. 721-726, 1993.
181.G. Cesare, G. Masini, and F. Palma, “Modeling and realization of a high-gain homojunction a-Si:H bulk barrier phototransistor,” IEEE Trans. Electron Devices, vol. 43, pp. 1077-1084, 1996.
182.S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, 150 (1981).
183.R. A. Logan, A. G. Chynoweth, and B. G. Cohen, “Avalanche breakdown in gallium arsenide p-n junctions,” Phys. Rev., vol. 128, pp. 2518-2523, 1962.
184.J. Y. Chen, D. F. Guo, S. Y. Cheng, K. M. Lee, C. Y. Chen, H. M. Chuang, S. Y. Fu, and W. C. Liu, “A new InP-InGaAs HBT with a superlattice-collector structure,” IEEE Electron Device Lett., vol. 25, pp. 244-246, 2004.
185.S. Y. Huang, K. M. Chen, G. W. Huang, H. C. Tseng, T. L. Hsu, C. Y. Chang, and T. Y. Huang, “Hot-carrier effects on power characteristics of SiGe HBTs,” IEEE Electron Device Lett., vol. 25, pp. 393-395, 2004.
186.Y. Daekyu, L. Kyungho, K. Bumman, D. Ontiveros, K. Vargason, J. M. Kuo, and Y. C. Kao, “Ultra high-speed InP-InGaAs SHBTs with fmax of 478 GHz,” IEEE Electron Device Lett., vol. 24, pp. 384-386, 2003.
187.B. Jalali, R. N. Nottenburg, Y. K. Chen, A. F. J. Levi, D. Sivco, A. Y. Cho, and D. A. Humphrey, “Near-ideal lateral scaling in abrupt Al0.48In0.52As/In0.53Ga0.47As heterostructure bipolar transistors prepared by molecular beam epitaxy,” Appl. Phys. Lett., vol. 54, pp. 2333-2335, 1989.
188.H. H. Lin and S. C. Lee, “Super-gain AlGaAs/GaAs heterojunction bipolar transistors using an emitter edge-thinning design,” Appl. Phys. Lett., vol. 47, pp. 839-841, 1985.
189.Y. S. Lin, D. H. Huang, W. C. Hsu, K. H. Su, and T. B. Wang, “Enhancing the current gain in InP/InGaAs double heterojunction bipolar transistors using emitter edge thinning,” Semicond. Sci. Technol., vol. 21, pp. 303-305, 2006.
190.G. B. Gao, Z. F. Fan, N. Teraguchi, T. C. Shen, and H. Morkoç, “AlxGa1−xAs/AlyGa1−yAs and GaAs pseudo-heterojunction bipolar transistors with lateral emitter resistor,” Appl. Phys. Lett., vol. 62, pp. 994-996, 1993.
191.J. H. Tsai, “Characteristics of InGaP/GaAs co-integrated δ-doped heterojunction bipolar transistor and doped-channel field effect transistor,” Solid-State Electron., vol. 46, pp. 45-48, 2002.
192.C. C. Wu and S. C. Lee, “Emitter composition and geometry related surface recombination current of AlGaAs/GaAs heterojunction bipolar transistors,” J. Appl. Phys., vol. 72, pp. 5483-5485, 1992.
193.J. J. Chen, G. B. Gao, J. I. Chyi, and H. Morkoc, “Breakdown behavior of GaAs/AlGaAs HBTs,” IEEE Trans. Electron Devices, vol. 36, pp. 2165-2172, 1989.
194.D. F. Guo, “Heterostructure optoelectronic switch with lightcontrollable S-shaped negative differential resistance,” Appl. Phys. Lett., vol. 72, pp. 1010-1012, 1998.
195.S. C. Lee, J. N. Kuo, and H. H. Lin, “Origin of high offset voltage in an AlGaAs/GaAs heterojunction bipolar transistor,” Appl. Phys. Lett., vol. 45, pp. 1114-1116, 1984.
196.N. Chand, R. Fischer, and H. Morkoc, “Collector-emitter offset voltage in AlGaAs/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 47, pp. 313-315, 1985.
197.T. Won, S. Iyer, S. Agarwala, and H. Morkoc, “Collector offset voltage of heterojunction bipolar transistors grown by molecular beam epitaxy,” IEEE Electron Device Lett., vol. 10, pp. 274-276, 1989.
198.W. Yun, D. W. Scott, D. Yingda, A. C. Gossard, and M. J. Rodwell, “A 160-GHz fT and 140-GHz fMAX submicrometer InP DHBT in MBE regrown-emitter technology,” IEEE Electron Device Lett., vol. 25, pp. 232-234, 2004.
199.P. A. Houston, C. Blaauw, A. Margittai, M. N. Svilans, N. Puetz, D. J. Day, F. R. Shepherd, and A. J. Springthorpe, “Double-heterojunction bipolar transistors in InP/GaInAs grown by metal organic chemical vapour deposition,” Electron. Lett., vol. 23, pp. 931-932, 1987.
200.C. Z. Chen and S. C. Lee, “The effect of the base-collector potential spike on the common-emitter I-V characteristics of AlGaAs double-heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 34, pp. 1463-1469, 1987.
201.M. E. Klausmeier-Brown, P. E. Dodd, M. S. Lundstrom, and M. R. Melloch, “Heteroface bipolar transistor based on bandgap narrowing in p+-GaAs,” Proc. IEEE Bipolar Circuits & Technology Meeting, pp. 33-36, 1988.
202.L. F. Luo, H. L. Evans, and E. S. Yang, “A heterojunction bipolar transistor with separate carrier injection and confinement,” IEEE Trans. Electron Devices, vol. 36, pp. 1844-1846, 1989.
203.X. Wu, Y. Q. Wang, L. F. Luo, and E. S. Yang, “An AlGaAs/GaAs heterostructure-emitter bipolar transistor,” IEEE Electron Device Lett., vol. 11, pp. 264-266, 1990.
204.W. Liu, D. Costa, and J. S. Harris, “Characteristics of InGaP/GaAs co-integrated δ-doped heterojunction bipolar transistor and doped-channel field effect transistor,” Solid-State Electron., vol. 34, pp. 1119-1123, 1991.
205.S. Tiwari and D. J. Frank, “Analysis of the operation of GaAlAs/GaAs HBTs,” IEEE Trans. Electron Devices, vol. 36, pp. 2105-2121, 1989.
206.H. Ito, T. Ishibashi, and T. Sugeta, “Current gain enhancement in graded base AlGaAs/GaAs HBTs associated with electron drift motion,” Jpn. J. Appl. Phys., vol. 24, pp. L241-L243, 1985.
207.J. R. Hayes, F. Capasso, A. C. Gossard, R. J. Malik, and W. Wiegmann, “Bipolar transistor with graded band-gap base,” Electron. Lett., vol. 19, pp. 410-411, 1983.
208.S. P. Lee and D. L. Pulfrey, “Modelling the d.c. performance of GaAs homojunction bipolar transistors,” Solid-State Electron., vol. 29, pp. 713-723, 1986.
209.W. Walukiewicz, J. Lagowski, L. Jastrzebski, and H. C. Gatos, “Minority-carrier mobility in p-type GaAs,” J. Appl. Phys., vol. 50, pp. 5040-5042, 1979.
210.J. P. Mckelvey, Solid State and Semiconductor Physics (Harper & Row, New York) p. 350, 1960.
211.O. Nakajima, K. Nagata, H. Ito, T. Ishibashi, and T. Sugeta, “Transient response of photoluminescence for electric field in a GaAs/Al0.7Ga0.3As single quantum well: Evidence for field-induced increase in carrier life time,” Jpn. J. Appl. Phys., vol. 24, pp. L586-L588, 1985.
212.S. N. Mohamadm, J. Chen, J. I. Chyi, and H. Morkoc, “Collector-emitter offset voltage in AlGaAs/GaAs heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 56, pp. 937-939, 1990.
213.Y. S. Hiraoka, J. Yoshida, and M. Azuma, “Two-dimensional analysis of emitter-size effect on current gain for GaAlAs/GaAs HBT's,” IEEE Trans. Electron Devices, vol. 34, pp. 721-725, 1987.
214.N. Hayama and K. Honji, “Emitter size effect on current gain in fully self-aligned AlGaAs/GaAs HBT's with AlGaAs surface passivation layer,” IEEE Electron Device Lett., vol. 11, pp. 388-390, 1990.
215.S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1981.
216.R. A. Logan, A. G. Chynoweth, and B. G. Cohen, “Avalanche breakdown in gallium arsenide p-n junctions,” Phys. Rev., vol. 128, pp. 2518-2523, 1962.
217.C. H. Henry, R. A. Logan, and F. R. Merritt, “The effect of surface recombination on current in AlxGa1−xAs heterojunctions,” J. Appl. Phys., vol. 49, pp. 3530-3542, 1978.
218.K. Mochizuki, H. Masuda, M. Kawata, K. Mitani, and C. Kusano, “Observation of the surface recombination current with an ideality factor of unity in AlGaAs/GaAs heterojunction bipolar transistors,” Jpn. J. Appl. Phys., vol. 30, pp. L266-L268, 1991.
219.W. Liu and J. S. Harris, “Diode ideality factor for surface recombination current in AlGaAs/GaAs heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 39, pp. 2726-2732, 1992.
220.B. R. A. Neves, E. S. Alves, J. F. Sampaio, A. G. Oliveira, and M. V. B. Moreira “Self-induced persistent photoconductivity in resonant tunneling devices,” Appl. Phys. Lett., vol. 69, pp. 1125-1127, 1996.
221.S. J. Kovacic, B. J. Robinson, J. G. Simmons, and D. A. Thompson, “InP/InGaAsP double-heterostructure optoelectronic switch,” IEEE Electron Device Lett., vol. 14, pp. 54-56, 1993.
222.R. A. Milano, P. D. Dapkus, and G. E. Stillman, “An analysis of the performance of heterojunction phototransistors for fiber optic communications,” IEEE Trans. Electron Devices, vol. 29, pp. 266-274, 1982.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊