跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/02 17:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭眾允
研究生(外文):Chung-Yun Cheng
論文名稱:矽鍺源/汲極應變力影響45奈米P型金氧半場效電晶體佈局依賴性,應力引致缺陷以及元件特性可靠度之研究
論文名稱(外文):Studies of SiGe Strain Impact on Layout Dependence, Stress-induced Defects and Reliability for 45nm PMOSFETs with SiGe Source/Drain
指導教授:謝建成謝建成引用關係方炎坤方炎坤引用關係
指導教授(外文):Jang-Cheng HsiehYean-Kuen Fang
學位類別:博士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:129
中文關鍵詞:閃光燈熱退火矽鍺源/汲極熱流載子壓力效應氧化層定義區效應應力引致缺陷
外文關鍵詞:stress-induced defectsFLASiGe S/DHCSLOD effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:385
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
隨著CMOS技術演進,利用應變矽鍺提升P型金氧半場效電晶體元件特性已成為重要的應變工程技術。應變工程使通道內產生壓縮應變力借以增加載子遷移率和驅動電流。然而應力工程的應用不可避免地會遭遇一些問題,例如:應力會受幾何佈局(Layout)及氧化層定義區(LOD)大小的影響,同時亦會產生像是:應力引致缺陷密度、偏壓溫度不穩定性、和熱載流子效應等可靠度相關議題。如何找尋方法去得到通道內之最大應變力是目前主要之課題,而本論文在元件特性和可靠度分析上,觀察到許多從未發表之現象,讓吾人對P型金氧半場效電晶體矽鍺源/汲極應變力之研究有更深一層地了解。
應力會受元件幾何結構、材料、及製程流程各項參數的影響。吾人利用量測數據和模擬結果,針對應變矽鍺源/汲製程之佈局依賴性、應力引致缺陷、矽鍺及淺塹渠絕緣引致應變釋放、和熱載流子現象等各項效應詳細研究,並提出改善元件特性和可靠度的最佳方案。
首先,吾人發現矽鍺源/汲極和淺塹渠絕緣所產生的機械應變力,關係著元件特性及氧化層定義區效應(LOD Effect)的變化。同時,也觀察到模擬閘極(Dummy poly)對矽鍺元件來說扮演一個重要的角色,但對傳統無矽鍺元件卻沒有影響。
其次, 矽鍺源/汲極引致缺陷對未來的元件技術及電路設計上來說,是一個很嚴竣的挑戰。實驗及模擬結果顯示,矽鍺源/汲極應變製程雖可獲得顯著的壓縮應變力,但也會在閘極氧化層及源/汲極延展交界處產生大量的受體態位缺陷,因而導致漏電流的發生。此外,因元件尺寸、通道及淺塹渠絕緣間距離持續縮小的關係,機械應變力受影響愈來愈嚴重。且缺陷密度因為壓縮應變力受到邊界淺塹渠(edge-STI)侷限的關係,隨著元件寬度的縮小,跟著減少。這一點正與非矽鍺傳統製程的特性相反。
另外在可靠度方面,吾人發現熱載流子壓力效應(HCS)加速應變矽鍺源/汲極元件退化的主要機制不同於傳統無矽鍺元件。此外,熱載流子壓力效應因產生大量界面缺陷態位造成閘極氧化層劣化的原因亦被發現:一是因矽和矽鍺晶格錯位所產生之壓縮機械應變力,二是因熱載流子壓力所引發的高電場效應。
最後,深入探討閃光燈熱退火(FLA)對45奈米矽鍺源/汲極P型金氧半場效電晶體p-n界面漏電流之影響。有無快速閃光熱退火的製程會引起不同的界面漏電流。吾人依照活化能的計算結果,分析漏電流機制,並提出模型來証明經過快速閃光燈熱退火製程後,矽鍺源/汲極應變力引致缺陷的現象。
For the advanced CMOS technology, the use of the strained SiGe in PMOSFET S/D regions is one of the most important strain engineering technologies to enhance device performances. The resulting compressive stress in the channel increases the carrier mobility and hence the drive current. However, strain engineering would inevitably raise concerns such as: strain induced defect density, geometry, LOD effects, and reliability problems (e.g. NBTI, PBTI and Hot Carrier effects etc.). The primary research topic is to explore pathways to maximize the desired strain in the device channel. This thesis studies some unprecedented phenomena for better understanding of SiGe S/D strain effect in PMOS device performance and reliability issue.
The stress is a function of various parameters such as geometry of the structure, materials, process flow, and etc. A set of variables such as stress layout dependence, stress relaxation due to SiGe S/D and STI, stress-induced defects, and hot carrier effect for SiGe S/D process have been addressed and understood with the help of silicon data and simulation results. As a result, compromises between the improvement of device performance and device reliability are proposed.
Firstly, in this thesis, we investigate that the mechanical stress resulted from the strained SiGe S/D and STI significantly impacts device performance and length of thin oxide definition area (LOD) effect. The results suggest that the dummy gate plays a significant role in the SiGe sample, but does not induce LOD effect in the non-SiGe device.
Secondly, defects induced from the SiGe S/D strain become a crucial challenge for the future device technology and circuit design. The measurements and simulation results show that the embedded SiGe S/D strain process creates a significant compressive strain, and generates a large number of acceptor-like states at the interface of gate oxide and S/D extension regions to result in the leakage current. Furthermore, the mechanical stress issue will become more and more serious for the continuous shrinking active area and the shorter distance between the channel and the STI edge. The compressive stress is limited by edge-STI, thus decreasing defect density in narrower width, as opposed to the conventional non-SiGe devices.
Thirdly, we study the reliability issues and find that the dominant mechanism of HCS degradation in strained SiGe S/D devices is different from that in non-SiGe S/D devices. In addition, some sources to deteriorate the gate dielectric for Nit generation are also found; one is the compressively mechanical stress resulted from the lattice mismatch between Si and SiGe; and the other is the high electric field resulted from the HCS.
Finally, we deeply investigate the effect of flash lamp annealing (FLA) on the S/D p-n junction leakages of a 45 nm PMOSFET with strained SiGe S/D. The SiGe S/D PMOSFETs with and without FLA have different behaviors in junction leakage currents. Based on activation energy (Ea) measurements, we analyze the leakage mechanisms in detail, and give models to explain the phenomenon of SiGe S/D induced defects after FLA processing.
Abstract (Chinese) I
Abstract (English) III
Acknowledgement (Chinese) V
Contents VI
Table Captions IX
Figure Captions X

Chapter1 Introduction 1
1.1 Strained Silicon Transistors 1
1.1.1 History 1
1.1.2 Biaxial and Uniaxial Strained-Silicon 2
1.1.3 Embedded SiGe S/D 3
1.2 Challenges 4
1.3 Organization of the Thesis 5

Chapter2 Layout Dependence of Stress on device
performance in 45nm p-MOSFETs with Strained SiGe
Source/Drain 12
2.1 Background 12
2.2 Motivation 13
2.3 LOD Effect in pMOSFETs with SiGe S/D
and Dummy Gate 14
2.3.1 Device Preparation 14
2.3.2 Measurement Structures and Conditions 15
2.3.3 Results and Discussions 16
2.3.4 TCAD Simulation Comparison 18
2.4 Conclusions 22

Chapter3 Analyses of Stress Effect on Gate Oxide
Degradation in 45-nm pMOSFETs with strained SiGe
Source/Drain 39
3.1 Background 39
3.1.1 Ge Out-Diffusion in Strained-Si nMOSFETs 40
3.2 Motivation 41
3.2.1 Defects induced by SiGe S/D pMOSFETs 41
3.2.2 Width and Length Dependence
in SiGe S/D pMOSFETs 42
3.3 Investigation and Localization of
Stress-Induced Defects 43
3.3.1 Device Preparation 43
3.3.2 Charge Pumping and Low Gate-Leakage
Gated Diode Measurements 44
3.3.3 Results and Discussions 45
3.4 Narrow Width and Length Dependence of SiGe
and STI Stress Induced Defects in 45nm pMOSFETs
with Strained SiGe S/D 48
3.4.1 Device Fabrication 48
3.4.2 Measurements 48
3.4.3 Results and Discussion 49
3.4.4 T-CAD Simulations 51
3.5 Conclusions 52

Chapter4 Reliability Issue in 45 nm p-MOSFETs with
Strained SiGe Source/Drain 77
4.1 Background 77
4.1.1 Negative Bias Temperature Instability (NBTI) 77
4.1.2 Hot-Carrier Injection Mechanisms 78
4.2 Motivation 80
4.3 Hot Carrier Injection in SiGe S/D p-MOSFETs 81
4.3.1 Device Preparation 81
4.3.2 Measurement Structures and Conditions 82
4.3.3 Results and Discussions 83
4.4 Conclusions 86

Chapter5 Flash Lamp Annealing Induced p-n Junction
Leakage in a 45 nm p-MOSFET with Strained SiGe
Source/Drain 102
5.1 Background 102
5.1.1 Flash Lamp Annealing (FLA) and
Laser Spike Annealing (LSA) 102
5.2 Motivation 103
5.3 Device Preparation and Measurements 104
5.4 Results and Discussions 105
5.5 Fitting Model 106
5.6 Conclusions 109

Chapter6 Summary and Prospects 122
6.1 Summary of Contributions 122
6.2 Suggestions of Further Works 124

Appendix A: Author’s Related Publication 127
Appendix B: Vita 129
[1.1] G. E. Moore, “Lithography and the future of
Moore’s law,” Proc. VIIIth Optical /
Microlithography Conference, vol. 2440,
pp. 2-17, February 1995.
[1.2] P. M. Zeitzoff and J. E. Chung, “Weighing in
on logic scaling trends,” IEEE Circuit and
Device Magazine, vol. 18, pp. 18-27, 2002.
[1.3] P. A. Gargini, “The global route to future
semiconductor technology,” IEEE Circuit and
Device Magazine, vol. 18, pp. 18-27, 2002.
[1.4] Scott E. Thompson, Mark Armstrong, Chis Auth,
Mohsen Alavi, Mark Buehler, Robert Chau, Steve
Cea, Tahir Ghani, Glenn Glass, Thomas Hoffman,
Chia-Hong Jan, Chis Kenyon, Jason Klaus, Kelly
Kuhn, Zhiyong Ma, Brian Mcintyre, Kaizad Mistry,
Anand Murthy, Borna Obradovic, Ramune Nagisetty,
Phi Nguyen, Sam Sivakumar, Reaz Shaheed, Lucian
Shifren, Bruce Tufts, Sunit Tyagi, Mark Bohr,
and Youssef El-Mansy, “A 90-nm Logic Technology
Featuring Strained-Silicon,” IEEE Trans.
Electron Devices, vol. 51, no. 11, pp. 1790-1797,
November 2004.
[1.5] C. S. Smith, “Piezoresistance effect in
germanium and silicon,” Phys. Rev., vol. 94,
pp. 42-49, 1954.
[1.6] K. Mistry, M. Armstrong, C. Auth, S. Cea, T.
Coan, T. Ghani, T. Hoffmann, A. Murthy, J.
Sandford, R. Shaheed, K. Zawadzki, K. Zhang,
S. Thompson, and M. Bohr, “Delaying Forever:
Uniaxial Strained Silicon Transistors in a 90nm
CMOS Technology,” in VLSI Symp. Tech. Dig.,
pp. 50-51, 2004.
[1.7] T. Ghani, M. Armstrong, C. Auth, M. Bost, P.
Charvat, G. Glass, T. Hoffmann, K. Johnson,
C. Kenyon, J. Klaus, B. Mclntyre, K. Mistry,
A. Murthy, J. Sandford, M. Silberstein, S.
Sivakumar, P. Smith, K. Zawadzki, S. Thompson
and M Bohr, ”A 90 High Volume Manufacturing
Logic Technology Featuring Novel 45nm Gate
Length Strained Silicon CMOS Transistors,”
in IEDM Tech Dig., pp. 978-980, 2003.

[2.1] G. Eneman, P. Verheyen, R. Rooyackers, F. Nouri,
L. Washington, R. Degraeve, B. Kaczer, V. Moroz,
A. De Keersgieter, R. Schreutelkamp, M.
Kawaguchi, Y. Kim, A. Samoilov, L. Smith,
P. P. Absil, K. De Meyer, M. Jurczak, and
S. Biesemans, “Layout Impact on the Performance
of a Locally Strained PMOSFET,” in VLSI Symp
Tech. Dig., pp. 22-23, 2005.
[2.2] S. Tyagi, C. Auth, P. Bai, G. Curello,
H. Deshpande, S. Gannavaram, O. Golonzka,
R. Heussner, R. James, C. Kenyon, S-H Lee,
N. Lindert, M. Liu, R. Nagisetty, S. Natarajan,
C. Parker, J. Sebastian, B. Sell, S. Sivakumar,
A. St Amour, and K. Tone,“An advanced low
power, high performance, strained channel
65nm technology,” in IEDM Tech Dig.,
pp. 245-247, 2005.
[2.3] Ke Cao, Sorin Dobre, and Jiang Hu, “Standard
Cell Characterization Considering Lithography
Induced Variations,” in DAC, San Francisco,
California, USA, pp. 24-28, July, 2006.
[2.4] K. Ota, T. Sanuki, K. Yahashi, Y. Miyanami,
K. Matsuo, J. Idebuchi, M. Moriya, K. Nakayama,
R. Yamaguchi, H. Tanaka, T. Yamazaki, S.
Terauchi, A. Horiuchi, S. Fujita, I. Mizushima,
H. Yamasaki, K Nagaoka, A. Oishi, T. Takegawa,
K. Ohno, M. Iwai, M. Saito, F. Matsuoka, and
N. Nagashima,“Scalable eSiGe S/D technology
with less layout dependence for 45-nm
generation,” in VLSI Symp Tech. Dig.,
pp. 73-76, 2006.
[2.5] Chunbo Liu, James Ma and Jeong Choi, “An
Electrical Technique for Determining MOSFET Gate
Length Reduction Due to Process Micro-loading
Effects in Advanced CMOS Technology,” in IEEE
ICMTS, pp. 118-121, 2000.
[2.6] Scott E. Thompson, Mark Armstrong, Chis Auth,
Mohsen Alavi, Mark Buehler, Robert Chau, Steve
Cea, Tahir Ghani, Glenn Glass, Thomas Hoffman,
Chia-Hong Jan, Chis Kenyon, Jason Klaus, Kelly
Kuhn, Zhiyong Ma, Brian Mcintyre, Kaizad Mistry,
Anand Murthy, Borna Obradovic, Ramune Nagisetty,
Phi Nguyen, Sam Sivakumar, Reaz Shaheed, Lucian
Shifren, Bruce Tufts, Sunit Tyagi, Mark Bohr,
and Youssef El-Mansy, “A 90-nm Logic Technology
Featuring Strained-Silicon,” IEEE Trans.
Electron Devices, vol. 51, no. 11, pp. 1790-1797,
November 2004.
[2.7] T. Ghani, M. Armstrong, C. Auth, M. Bost, P.
Charvat, G. Glass, T. Hoffmann, K. Johnson, C.
Kenyon, J. Klaus, B. Mclntyre, K. Mistry, A.
Murthy, J. Sandford, M. Silberstein, S. Sivakumar,
P. Smith, K. Zawadzki, S. Thompson and M Bohr,
”A 90 High Volume Manufacturing Logic Technology
Featuring Novel 45nm Gate Length Strained Silicon
CMOS Transistors,” in IEDM Tech Dig.,
pp. 978-980, 2003.
[2.8] C. Y. Cheng, Y. K. Fang, J. C. Hsieh, H. Hsia,
W. M. Chen, S. S. Lin, and C. S. Hou, “Impact of
the strained SiGe source/drain on hot carrier
reliability for 45 nm p-type metal-oxide-
semiconductor field-effect transistor,”
Applied Physics Letters, 92, 1 (2008).
[2.9] C. Y. Cheng, Y. K. Fang, J. C. Hsieh, S. J. Yang,
Y. M. Sheu, and H. Hsia, “New Observations in
LOD Effect of 45nm P-MOSFETs with Strained SiGe
Source/Drain and Dummy Gate,” proof and to be
published in IEEE Transaction on Electron Devices
, August 2009.
[2.10] Geert Eneman, Peter Verheyen, Rita Rooyackers,
Faran Nouri, Lori Washington, Robert
Schreutelkamp, Victor Moroz, Lee Smith, An De
Keersgieter, Malgorzata Jurczak, and Kristin De
Meyer, “Scalability of the Si1-xGex Source/Drain
Technology for the 45-nm Technology Node and
Beyond,” IEEE Trans. Electron Devices, vol. 53,
no. 7, pp. 1647-1656, July 2006.
[2.11] K. Mistry, M. Armstrong, C. Auth, S. Cea, T. Coan,
T. Ghani, T. Hoffmann, A. Murthy, J. Sandford, R.
Shaheed, K. Zawadzki, K. Zhang, S. Thompson, and
M. Bohr, “Delaying Forever: Uniaxial Strained
Silicon Transistors in a 90nm CMOS Technology,”
in VLSI Symp Tech. Dig., pp. 50-51, 2004.
[2.12] Masafumi Miyamoto, Hiroyuki Ohta, Yukihiro
Kumagai, Yasuo Sonobe, Kousuke Ishibashi,
and Yasushi Tainaka,“Impact of Reducing
STI-Induced Stress on Layout Dependence of
MOSFET Characteristics,”IEEE Trans. Electron
Devices, vol. 51, no. 3, pp. 440-443, March 2004.
[2.13] KKenta Yamada, Takashi Sato, Shuhei Amakawa
Noriaki Nakayama, Kazuyamasu, and Shigetak
Kumashiro,“Layout-Aware Compact Model of
MOSFET Characteristics Variations Induced by
STI Stress,” IEICE TRANS. ELECTRON.,
VOL.E91–C, NO.7, pp.1142, JULY 2008.
[2.14] Mohan V. Dunga, Xuemei Xi, Ali M. Niknejad, and
Chenming Hu, “A Holistic Model for Mobility
Enhancement through Process-Induced Stress,”
IEEE Conference on Electron Devices and
Solid-State, pp. 43-46, 2005
[2.15] Z. Luo, Y. F. Chong, J. Kim, N. Rovedo, B. Greene,
S. Panda, T. Sato, J. Holt, D. Chidambarrao,
J. Li, R. Davis, A. Madan, A. Turansky,
O. Gluschenkov, R. Lindsay, A. Ajmera, J. Lee,
S. Mishra, R. Amos, D. Schepis, H. Ng, and
K. Rim, “Design of High Performance PFETs with
Strained Si Channel and Laser Anneal,”
in IEDM Tech Dig., pp. 73-76, 2005.

[3.1] Jerry G. Fossum, Fellow, IEEE, and Weimin Zhang,
Member, IEEE, “Performance Projections of Scaled
CMOS Devices and Circuits with Strained Si-on-SiGe
Channels,” IEEE Trans. Electron Devices, vol. 50,
no.4 April 2003.
[3.2] K. Rim, S. Koester, M. Hargrove, J. Chu, P. M.
Mooney, J. Ott, T. Kanarsky, P. Ronsheim,
M. Ieong, A. Grill, H.-S. P. Wong, “Strained
Si NMOSFETs for High Performance CMOS Technology,
”in VLSI Symp. Tech. Dig., 2001, pp. 59-60.
[3.3] T. Ghani, M. Armstrong, C. Auth, M. Bost,
P. Charvat, G. Glass, T. Hoffmann, K. Johnson,
C. Kenyon, J. Klaus, B. Mclntyre, K. Mistry,
A. Murthy, J. Sandford, M. Silberstein,
S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson
and M Bohr, “A 90 High Volume Manufacturing
Logic Technology Featuring Novel 45nm Gate Length
Strained Silicon CMOS Transistors,”
in IEDM Tech Dig., pp. 978-980, 2003.
[3.4] G. Q. Lo, W. Ting, J. Ahn, and D. L. Kwong,
“Improved Performance and Reliability of MOSFETs
with Ultrathin Gate Oxides Prepared by
Conventional Furnace Oxidation of Si in Pure
N2O Ambient,” in VLSI Symp. Tech. Dig.,
1991, pp. 43–44.
[3.5] Y. H. Wu, Albert Chin and W. J. Chen, “Thickness
Dependent Gate Oxide Quality of Thin Thermal
Oxide Grown on High Temperature Formed SiGe,”
IEEE Electron Device Lett., vol. 21, no. 6,
June, 2000.
[3.6] G. Eneman, E. Simoen, R. Delhougne, P. Verheyen,
V. Simons, R. Loo, M. Caymax, C. Claeys,
W. Vandervorst, and K. De Meyer, “Analysis of
the Leakage Current Origin in Thin Strain Relaxed
Buffer Substrates,” Journal of The
Electrochemical Society, Volume 153, Issue 5,
pp. G379-G384, 2006.
[3.7] Steve S. Chung, Y. R. Liu, C. F. Yeh, S. R. Wu,
C. S. Lai, T. Y. Chang, J. H. Ho, C. Y. Liu,
C. T. Huang, C. T. Tsai, W. T. Shiau, and
S. W. Sun,”A New Observation of the Germanium
Outdiffusion Effect on the Hot Carrier and NBTI
Reliabilities in Sub-100nm Technology
Strained-Si/SiGe CMOS Devices,” in VLSI Symp.
Tech. Dig., pp. 86-87, 2005.
[3.8] W.-C. Hua, M. H. Lee, P. S. Chen, S. Maikap,
C. W. Liu, and K. M. Chen,” Ge Outdiffusion
Effect on Flicker Noise in Strained-Si nMOSFETs”
IEEE Electron Device Lett., vol.25, no. 10,
October, pp.693, 2004.
[3.9] C. Y. Cheng, Y. K. Fang, J. C. Hsieh, Y. M. Sheu,
H. K. Hsia, C. P. Lin, W. M. Chen, S. S. Lin,
and C. S. Hou,“Analyses of the Stress Effect
on Gate Oxide Degradation in 45-nm Technology
SiGe Source/Drain (S/D) CMOS Devices,” 6th
Asian Conference on Electrochemistry (ACEC2008),
Taipei, Taiwan, (2008).
[3.10] A. Neugroschel, CT Sah, KM Han, M.S. Carroll,
T. Nishida, J.T. Kavalieros and Y. Lu,
“Direct-current measurements oxide and traps on
oxidized silicon,” IEEE Trans. Electron Devices,
vol. 42, pp.1657-1662, 1995.
[3.11] Chih-Tang Sah, A. Neugroschel, K.M. Han,
“Current-accelerated channel hot carrier stress
of MOS transisitors,” Electronics Letters,
vol. 34, pp. 217-219, 1998.
[3.12] C. –T Sah, Invited talk at IEEE 6th
International Conference on Solid-State and
Integrated-Circuit Technology, pp. 1-15,
Shanghai, Oct. 22, 2001.
[3.13] Peter. Seckbacher, Josef Berger, A. Asenov,
Frederick Koch, and Werner Weber, “The
“Gated-Diode” Configuration in MOSFET’s,
A Sensitive Tool for Characterizing Hot-Carrier
Degradation,” IEEE Trans. Electron Devices,
vol. 42, no. 7, pp.1287-1296, July 1995.
[3.14] Steve S. Chung, C.M. Yih, S.M. Cheng, and
M.S. Liang, “A New Oxide Damage Characterization
Technique for Evaluating Hot Carrier Reliability
of Flash Memory Cell after P/E Cycles,”
in Symp. VLSI Tech. Dig., pp.111-112, 1997.
[3.15] Steve S. Chung, S.-J. Chen, C.-K. Yang, S.-M.
Cheng S.-H. Lin Y.-C. Sheng, H.-S. Lin, K.-T.
Hung, D.-Y. Wu, T.-R. Yew, S.-C. Chien, F.-T.
Liou, and Frank Wen, “A Novel and Direct
Determination of the Interface Traps in Sub-
100nm CMOS Devices with Direct Tunneling
Regime (12~16A) Gate Oxide,” in Symp.
VLSI Tech. Dig., pp. 74-75, 2002.
[3.16] J. Damiano, C. K. Subramanian, M. Gibson,
Y.-S. Feng, L. Zeng, J. Sebek, E. Deeters,
C. Feng, T. McNelly, M. Blackwell, H. Nguyen,
H. Tian, J. Scott, J. Zaman, C. Honcik,
M. Miscione, K. Cox, and J. D. Hayden,
“Characterization and Elimination of Trench
Dislocations,” VLSI Symp. Tech. Dig.,
pp. 212-213, 1998.
[3.17] D. Ha, C. Cho, D. Shin, G.-H. Koh, T.-Y. Chung,
and K. Kim, “Anomalous Junction Leakage
Current Induced by STI Dislocations and Its
Impact on Dynamic Random Access Memory Devices,”
IEEE Trans. Electron Devices, vol. 46, no. 5,
pp. 940-946, May 1999.
[3.18] Masafumi Miyamoto, Hiroyuki Ohta, Yukihiro
Kumagai, Yasuo Sonobe, Kousuke Ishibashi, and
Yasushi Tainaka, “Impact of Reducing STI-
Induced Stress on Layout Dependence of MOSFET
Characteristics,” IEEE Trans. Electron Devices,
vol. 51, no. 3, pp. 440-443, March 2004.
[3.19] G. Eneman, P. Verheyen, R. Rooyackers, F. Nouri,
L. Washington, R. Degraeve, B. Kaczer, V. Moroz,
A. De Keersgieter, R. Schreutelkamp, M.
Kawaguchi, Y. Kim, A. Samoilov, L. Smith,
P. P. Absil, K. De Meyer, M. Jurczak, and S.
Biesemans, “Layout Impact on the Performance
of a Locally Strained PMOSFET,” in VLSI Symp
Tech. Dig., pp. 22-23, 2005.
[3.20] Y. Luo and D. K. Nayak, “Enhancement of CMOS
performance by process-induced stress,” IEEE
Trans. Semicond. Manuf. vol. 18, Issue: 1,
pp. 63-68, 2005.
[3.21] X. Wang, M. Huang, C. Bowen, L. Adam, S. Singh,
C. Chiu and J. Wu, “Exploring Transistor Width
Effect on Stress-induced Performance Improvement
in PMOSFET with SiGe Source/Drain,” IEEE
Simulation of Semiconductor Processes and
Devices, pp. 323-326, 2005.
[3.22] C. Y. Cheng, Y. K. Fang, J. C. Hsieh, H. Hsia,
W. M. Chen, S. S. Lin, and C. S. Hou, “Impact
of the strained SiGe source/drain on hot carrier
reliability for 45 nm p-type metal-oxide-
semiconductor field-effect transistor,”
Applied Physics Letters, 92, 1 (2008).
[3.23] Hsiang-Jen Huang, Kun-Ming Chen, Chun-Yen
Chang, Liang-Po Chen, Guo-Wei Huang, and
Tiao-Yuan Huang, “Reduction of Source/Drain
Series Resistance and Its Impact on Device
Performance for PMOS Transistors with Raised
Si1-xGex Source/Drain,” IEEE Electron Device
Lett., vol. 21, no. 9, September 2000.
[3.24] A. S. Grove, Physics and Technology of
Semiconductor Devices, New York: John
Wiley and Sons, pp. 298.
[3.25] C. Y. Cheng, Y. K. Fang, J. C. Hsieh, Y. M.
Sheu, H. Hsia2, W. M. Chen, S. S. Lin, and
C. S. Hou, “Layout Dependence of SiGe Strain
Effect and STI Induced Defects in 45nm p-MOSFETs
with Strain SiGe Source/Drain,” International
Conference on SSDM, NO: p-3-9, Tsukuba,
Japan, (2008)
[3.26] P. R. Chidambaram, C. Bowen, S. Chakravarthi,
C. Machala, and R. Wise, “Fundamentals of
silicon material properties for successful
exploitation of strain engineering in modern
CMOS manufacturing,” IEEE Trans. Electron
Devices, vol. 53, Issue:5, pp.944-964, 2006.
[3.27] Chung-Yun Cheng, Yean-Kuen Fang, Jang-Cheng
Hsieh, Yi-Ming Sheu, “Narrow Width and Length
Dependence of SiGe and Shallow-Trench-Isolation
Stress Induced Defects in 45 nm p-Type Metal-
Oxide-Semiconductor Field-Effect Transistors
with Strained SiGe Source/Drain,” Japanese
Journal of Applied Physics, 48, 2009.

[4.1] D. K. Schroder and J. A. Babcock, “Negative
bias temperature instability: Road to cross
in deep submicron silicon semiconductor
manufacturing,” J. Appl. Phys. vol.94, no.1,
July 2003.
[4.2] Dewi S. Sugiharto, Cary Y. Yang, Huy Le, and
James E. Chung, “Beating the Heat: Improving
CMOS Hot-Carrier Reliability through Analysis,
Modeling, and Simulation,” IEEE Circuits and
Devices, pp. 43-51, September 1998.
[4.3] E. Takeda, A. Shimizu, and T. Hagiwara, “Role
of hot-hole injection in hot-carrier effects
and the small degraded channel region in
MOSFET's,”IEEE Electron Device Letters,
vol. 4, no. 9, pp. 329-331, September 1983.
[4.4] Sang-Gi Lee, Jeong-Mo Hwang, and Hi-Deok Lee,
“Experimental Evidence for Nonlucky Electron
Model Effect in 0.15-um NMOSFETs,” IEEE Trans.
Electron Devices, vol. 49, no.11, pp.1876-1881,
November 2002.
[4.5] L. Su, S. Subbanna, E. Crabbe, P. Agnello, E.
Nowak, R. Schulz, S. Rauch, H. Ng, T. Newman,
A. Ray, M. Hargrove, A. Acovic, J. Snare, S.
Crowder, B. Chen, J. Sun, and B. Davari, “
A High Performance 0.08 um CMOS,” in VLSI Symp
Tech. Dig., pp. 12-13, 1996.
[4.6] K. Takeuchi, T. Yamamoto, A. Tanabe, T. Matsuki,
T. Kunio, M. Fukuma, K. Nakajima, H. Aizaki,
H. Miyamoto, and E. Ikawa, “0.15 μm CMOS with
high reliability and performance,” in IEDM Tech
Dig., pp. 883-886, December 1993.
[4.7] E. Li, E. Rosenbaum, J. Tao, G. C.-F. Yeap,
M.-R. Lin, and P. Fang, “Hot carrier effects
in nMOSFETs in 0.1 μm CMOS technology,”
IEEE 37th Annual International Reliability
Physics Symposium Proceedings, San Diego,
California, pp. 253-258, 1999.
[4.8] T. Ghani, M. Armstrong, C. Auth, M. Bost,
P. Charvat, G. Glass, T. Hoffmann, K. Johnson,
C. Kenyon, J. Klaus, B. Mclntyre, K. Mistry,
A. Murthy, J. Sandford, M. Silberstein,
S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson
and M Bohr, “A 90 High Volume Manufacturing
Logic Technology Featuring Novel 45nm Gate Length
Strained Silicon CMOS Transistors,” in IEDM Tech
Dig., pp. 978-980, 2003.
[4.9] K. Mistry, M. Armstrong, C. Auth, S. Cea, T. Coan,
T. Ghani, T. Hoffmann, A. Murthy, J. Sandford,
R. Shaheed, K. Zawadzki, K. Zhang, S. Thompson,
and M. Bohr, “Delaying Forever: Uniaxial Strained
Silicon Transistors in a 90nm CMOS Technology,”
in VLSI Symp Tech. Dig., pp. 50-51, 2004.
[4.10] Scott E. Thompson, Mark Armstrong, Chis Auth,
Mohsen Alavi, Mark Buehler, Robert Chau, Steve
Cea, Tahir Ghani, Glenn Glass, Thomas Hoffman,
Chia-Hong Jan, Chis Kenyon, Jason Klaus,
Kelly Kuhn, Zhiyong Ma, Brian Mcintyre,
Kaizad Mistry, Anand Murthy, Borna Obradovic,
Ramune Nagisetty, Phi Nguyen, Sam Sivakumar,
Reaz Shaheed, Lucian Shifren, Bruce Tufts,
Sunit Tyagi, Mark Bohr, and Youssef El-Mansy,
“A 90-nm Logic Technology Featuring Strained-
Silicon,” IEEE Trans. Electron Devices,
vol. 51, no. 11, pp. 1790-1797, November 2004.
[4.11] T. Yamamoto, K. Uwasawa, and T. Mogami, “Bias
temperature instability in scaled p+
polysilicongate p-MOSFET's,” IEEE Trans.
Electron Devices, vol. 46, no. 5, pp. 921-926,
May 1999.
[4.12] C. Y. Cheng, Y. K. Fang, J. C. Hsieh, H. Hsia,
W. M. Chen, S. S. Lin, and C. S. Hou, “Impact
of the strained SiGe source/drain on hot carrier
reliability for 45 nm p-type metal-oxide-
semiconductor field-effect transistor,”
Applied Physics Letters, 92, 1 (2008).
[4.13] Y. H. Goh and C. H. Ling, IEEE International
Conference on Semiconductor Electronics
Proceedings, Penang, Malaysia, pp. 23-27,
November 1996.
[4.14] Steve S. Chung, Y. R. Liu, C. F. Yeh, S. R. Wu,
C. S. Lai, T. Y. Chang, J. H. Ho, C. Y. Liu,
C. T. Huang, C. T. Tsai, W. T. Shiau, and
S. W. Sun, “A New Observation of the Germanium
Outdiffusion Effect on the Hot Carrier and NBTI
Reliabilities in Sub-100nm Technology Strained-
Si/SiGe CMOS Devices,” in VLSI Symp Tech. Dig.,
2005.
[4.15] Igor Polishchuk, Yee-Chia Yeo, Qiang Lu, Tsu-Jae
King, and Chenming Hu, “Hot-Carrier Reliability
Comparison for pMOSFETs with Ultrathin Silicon-
Nitride and Silicon-Oxide Gate Dielectrics,”
IEEE Trans. Device and Materials Reliability,
vol. 1, no. 3, pp.158-162, September 2001.
[4.16] Toshiaki Tsuchiya, Masao Sakuraba, and Junichi
Murota, “Hot Carrier Reliability of a Si/Ge
Hetero-Interface in Si/Ge MOSFETs,” IEEE 42nd
Annual International Reliability Physics
Symposium, Phoenix, pp.449-454, 2004.

[5.1] T. Ghani, M. Armstrong, C. Auth, M. Bost,
P. Charvat, G. Glass, T. Hoffmann, K. Johnson,
C. Kenyon, J. Klaus, B. Mclntyre, K. Mistry,
A. Murthy, J. Sandford, M. Silberstein, S.
Sivakumar, P. Smith, K. Zawadzki, S. Thompson
and M Bohr, “A 90 High Volume Manufacturing
Logic Technology Featuring Novel 45nm Gate
Length Strained Silicon CMOS Transistors,”
in IEDM Tech Dig., pp. 978-980, 2003.
[5.2] K. Mistry, M. Armstrong, C. Auth, S. Cea, T.
Coan, T. Ghani, T. Hoffmann, A. Murthy, J.
Sandford, R. Shaheed, K. Zawadzki, K. Zhang,
S. Thompson, and M. Bohr, “Delaying Forever:
Uniaxial Strained Silicon Transistors in a
90nm CMOS Technology,” in VLSI Symp Tech.
Dig., pp. 50-51, 2004.
[5.3] Scott E. Thompson, Mark Armstrong, Chis Auth,
Mohsen Alavi, Mark Buehler, Robert Chau, Steve
Cea, Tahir Ghani, Glenn Glass, Thomas Hoffman,
Chia-Hong Jan, Chis Kenyon, Jason Klaus, Kelly
Kuhn, Zhiyong Ma, Brian Mcintyre, Kaizad Mistry,
Anand Murthy, Borna Obradovic, Ramune Nagisetty,
Phi Nguyen, Sam Sivakumar, Reaz Shaheed, Lucian
Shifren, Bruce Tufts, Sunit Tyagi, Mark Bohr,
and Youssef El-Mansy, “A 90-nm Logic Technology
Featuring Strained-Silicon,” IEEE Trans.
Electron Devices, vol. 51, no. 11, pp. 1790-1797,
November 2004.
[5.4] Takayuki Ito, Kyoichi Suguro, Mizuki Tamura,
Toshiyuki Taniguchi, Yukihiro Ushiku, Toshihiko
Iinuma, Takaharu Itani, Masaki Yoshioka,
Tatsushu Owada, Yasuhiro Imaoka, Hiromi Murayama
and Tatasufumi Kusuda, “Low-Resistance
Ultrashallow Extension Formed by Optimized Flash
Lamp Annealing,” IEEE Trans. Semiconductor
Manufacturing, vol. 16, no. 3, pp. 417-422,
August 2003.
[5.5] T. Ito, K. Suguro, T. Itani, K. Nishinohara,
K. Matsuo and T. Saito, “Improvement of
Threshold Voltage Roll-off by Ultra-shallow
Jucntion Formed by Flash Lamp Annealing,”
in VLSI Symp. Tech Dig., pp. 53-54, 2003.
[5.6] T. Ito, T. Iinuma, A. Murakoshi, H. Akrtsu,
K. Suguro, T. Arikado, K. Okumura, M. Yoshioka,
T. Owaka, Y. Imaoka, H. Murayama, and T. Kusuda,
“Flash lamp anneal technology for effectively
activating ion implanted Si,” in Ext. Abstract
SSDM, Tokyo, Japan, pp. 182-183, 2001.
[5.7] T. Sanuki, T. Iwamoto, K. Ota, T. Komoda, H.
Yamazaki, A. Eiho, K. Miyahi, K, Nakayama,
O. Fuji, M. Togo, K. Ohno, H. Yoshimura,
K. Yoshida, T. Ito, A. Mineji, K. Yoshino,
T. Itani, K. Matsuo, T. Sato, S. Mori,
K. Nakazawa, M. Nakazawa, T. Shinyama,
K. Suguro, I. Mizushima, S. Iwasa, S. Muramatsu,
K. Nagaoka, M. Ikeda, M. Saito, H. Naruse,
Y. Enomoto, T. Kitano, M. Iwai, K. Imai,
N. Nagashima, T. Kuwata, F. Matsuoka,
“High-Performance 45nm node CMOS Transistors
Featuring Flash Lamp Annealing (FLA),”
in IEDM Tech Dig., pp. 281-284, 2007.
[5.8] F. Ootsuka, H. Ozaki, T. Sasaki, K. Yamashita,
H. Takada, N. Izumi, Y. Nakagawa, M. Hayashi,
K. Kiyono, M. Yasuhira, and T. Arikado, “Ultra-
Los Thermal Budget CMOS Process for 65nm-node
Low-Operation-Power Applications,”
in IEDM Tech Dig., 2003.
[5.9] A. Shima, Wang Yun, S. Talwar, and A. Hiraiwa,
“Ultra-shallow junction formation by non-melt
laser spike annealing for 50-nm gate CMOS,”
in VLSI Symp. Tech Dig., pp. 174-175, June 2004.
[5.10] S. K. H. Fung, H. T. Huang, S. M. Cheng, K. L.
Cheng, S. W. Wang, Y. P. Wang, Y. Y. Yao,
C. M. Chu, S. J. Yang, W. J. Liang, Y. K.
Leung, C. C. Wu, C. Y. Lin, S. J. Chang,
S. Y. Wu, C. F. Nieh, C. C. Chen, T. L. Lee,
Y. Jin, S. C. Chen, L. T. Lin, Y. H. Chiu,
H. J. Tao, C. Y. Fu, S. M. Jang, K. F. Yu,
C. H. Wang, T. C. Ong, Y. C. See, C. H. Diaz,
M. S. Liang, Y. C. Sun, “65nm CMOS high speed,
general purpose and low power transistor
technology for high volume foundry application,”
in VLSI Symp. Tech Dig., pp. 92-93, June 2004.
[5.11] S. M. Sze, Physics of Semiconductor Devices 2nd,
New Jersey: Bell Laboratories, Incorporated
Murray Hill, pp. 89-92, 1981.
[5.12] G. A. M. Hurkx, D. B. M. Klaassen, and
M. P. G. Knuvers, “A New Recombination Model for
Device Simulation Including Tunneling,” IEEE
Trans. Electron Devices, vol. 39, No.2, pp.
331-338, February 1992.
[5.13] B. L. Yang, P. T. Lai, and H. Wong, “Conduction
mechanisms in MOS gate dielectric films,”
Microelectronics Reliability, vol. 44,
pp. 709-718, 2004.
[5.14] H. Luo, H. Yang, and R. Luo, “Accurate and
fast estimation of junction band-to-band leakage
in nanometer-scale MOSFET,” in Proc. APCCAS,
pp. 956-959, 2006.
[5.15] Mariko Takayanagi and Shuichi Iwabuchi, “Theory
of band-to-band tunneling under nonuniform
electric fieldsfor subbreakdown leakage
currents,”IEEE Trans. Electron Devices,
vol. 38, No.6, pp. 1425-1431, June 1991.
[5.16] Tzu-Juei Wang, Chih-Hsin Ko, Shoou-Jinn Chang,
San-Lein Wu, Ta-Ming Kusn, and Wen-Chin Lee,
“The Effects of Mechanical Uniaxial Stress on
Junction Leakage in Nanoscale CMOSFETs,”
IEEE Trans. Electron Devices, vol. 55, No.2,
pp. 572-577, February 2008.
[5.17] Y. Taur and T. H. Ning, Fundamentals of Modern
VLSI Devices. New York: Cambridge Univ.
Press, pp. 94-95, 1998.
[5.18] C. Y. Cheng, Y. K. Fang, J. C. Hsieh, H. Hsia,
S. S. Lin, C. S. Hou, K. C. Ku, and Y. M. Sheu,
“Origins of flash lamp annealing induced p-n
junction leakages in a 45 nm p-MOSFET with
strained SiGe source/drain,” Journal of Physics
D: Applied Physics, Vol. 42, Issue 9,
May (2009).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top