跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/09 16:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱鼎文
研究生(外文):Ding-wen Chiou
論文名稱:硒化雙層金屬先驅物形成二硒銅銦(鋁)薄膜的研究
論文名稱(外文):A Study of Thin Film CuIn(Al)Se2 Formation Prepared by Selenization of Bi-layer Metallic Precursors
指導教授:彭洞清
指導教授(外文):Dung-ching Perng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:78
中文關鍵詞:硒化二硒銅銦(鋁)
外文關鍵詞:CuIn(Al)Se2selenization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
三元黃銅礦二硒銅銦(CIS)吸收層有高光學吸收係數(~105 cm-1)、可調能隙大小及長期穩定度等優點 [1],是個大有可為的薄膜太陽能電池材料。CIS可利用化學組成、缺陷結構與製程條件形成N型或P型材料。目前多元共蒸鍍二硒銅銦鎵(CIGS)和二硒銅銦鋁(CIAS)最高效率分別可達19.9% [2]和16.9% [3]。像其它薄膜一樣,CIS也可以使用硒化 [4]、油墨噴印 [5]和電鍍 [6]等製程形成。太陽能電池的運行與效率極受薄膜形貌的影響。此研究利用濺鍍硒化製程形成幾種銅/(銦+鋁)的CI(A)S薄膜形貌。
使用硒化堆疊金屬先驅物形成富銦(鋁)、富銅及接近標準比例的CI(A)S薄膜,並探討薄膜成份對形貌的影響。結果指出相對於富銦(鋁)的薄膜而言,富銅和接近標準比例的CI(A)S薄膜有較大的晶粒和較平坦的表面,意味著銦含量(或厚度)會影響薄膜結晶和形貌。薄膜硒化在石墨盒或鋁盒沒有發現明顯的不同。在此研究中,所有樣品均以CI(A)S (112)為優選晶相。
The ternary chalcopyrite CuInSe2-like absorber is a promising material for the fabrication of thin-film solar cells due to its high optical absorption coefficient (~105 cm-1), adjustable band gap, and potential for long-term stability [1]. CIS films can be n- or p-type depending on its chemical composition, defect structures and preparation conditions. The highest efficiencies of 19.9% [2] and 16.9% [3] for thin-film Cu(In,Ga)Se2 (CIGS) and Cu(In,Al)Se2 (CIAS) solar cells have been realized by the multi-source elemental co-evaporation process, respectively. Like other thin films, they can also be fabricated by a variety of processes such as selenization [4], ink printing [5], electrodeposition [6], and so on. Film morphology could significantly impact on down stream solar cell processing and efficiency.
This thesis studied film morphology of CI(A)S thin film formed by selenizatoin of various ratio of Cu to In(Al) precursors prepared by sputtering. The composition effects on morphologies of (In,Al)-rich, Cu-rich, and near stoichiometric CI(A)S thin films were studied using selenization of stacked elements precursors. The results show that Cu-rich and near-stoichiometric CI(A)S films had larger grains and smoother surface than (In,Al)-rich film, indicating that In composition (or thickness) can influence on film crystallization as well as morphology. No obvious differences were found for film selenization in graphite box or aluminum box. CI(A)S (112) was the preferred orientation for all studied samples.
Chapter 1 Introduction
1.1 Importance of photovoltaic solar cells...............12
1.2 Brief History of CIS-like Solar Cells................15
1.3 Solar Cell Fundamentals..............................17
1.3.1 Air Mass and Solar Spectrum................19
1.3.2 Solar Cell I-V Characteristics.............22
1.3.3 Other Parameters...........................25
Chapter 2 Introduction to CIS-like solar cells
2.1 The properties of chalcopyrite-based materials...30
2.2 Development of CIS&CIGS thin film solar cells....35
2.3 Compositional analysis...........................42
Chapter 3 Experimental Scheme
3.1 Experimental motivation..........................43
3.2 Experiment procedures............................44
3.3 Process equipments...............................45
3.3.1 Sputter system.............................45
3.3.2 Annealing system...........................47
3.4 Analysis equipments..............................49
3.4.1 X-ray diffraction (XRD)....................49
3.4.2 Scanning Electron Microscope (SEM).........50
3.4.3 X-ray energy dispersive (EDS)..............52
Chapter 4 Results and Discussion
4.1 Selenium deficiency..............................53
4.2 Overflowing selenium problem.....................56
4.3 Extremely In-rich CIS film.......................57
4.4 Extremely Cu-rich CIS film.......................58
4.5 Particles on the surface.........................62
4.6 Negative effects of CIS films deposited on bare soda-lime glass...............................................63
4.7 CIAS film morphology modulation......................66
Chapter 5 Conclusions and Future works
5.1 Conclusions......................................72
5.2 Future works.....................................73
[1] J. Palm, V. Probst, W. Stetter, R. Toelle, S. Visbeck, H. Calwer, T. Niesen, H. Vogt, O. Hernandez, M. Wendl and F.H. Karg, Thin Solid Films 451-452 (2004) 544-551.
[2] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, Prog. Photovolt: Res. Appl. 16 (2008) 235-239.
[3] S. Marsillac, P. D. Paulson, M. W. Haimbodi, R. W. Birkmire and W. N. Shafarman, Appl. Phys. Lett. 81 (2002) 1350-1352.
[4] O. Volobujeva, M. Altosaar, J. Raudoja, E. Mellikov, M. Grossberg, L. Kaupmees and P. Barvinschi, Sol. Energy Mater. Sol. Cells 93 (2009) 11-14.
[5] V. K. Kapur, A. Bansal, P. Le and O. I. Asensio, Thin Solid Films 431-432 (2003) 53-57.
[6] J. Kois, M. Ganchev, M. Kaelin, S. Bereznev, E. Tzvetkova, O. Volobujeva, N. Stratieva and A. N. Tiwari, Thin Solid Films 516 (2008) 5948-5952.
[7] Ito, K. (2000) Prospect of Fossil Fuels in the book of “energy for 21st Century”, 3rd annual Meeting Report for Nuclear Fusion.
[8] H. Hahn et al., Z. Anorg. Allg. Chem. 271 (1953) 228-230.
[9] S. Wagner, J. Shay and H. Kasper, Appl. Phys. Lett. 25 (1974) 434-435.
[10] J. Shay, S. Wagner and H. Kasper, Appl. Phys. Lett. 27 (1975) 89-90.
[11] ”Solar spectra", http://rredc.nrel.gov/solar/spectra/ (2000).
[12] S. M. Sze and K. K. Ng, “Physics of Semiconductor Devices”, Wiley-Interscience: John Wiley & Sons, third ed. (2007).
[13] K. Ramanathan, G. Teeter, J. C. Keane and R. Noufi, Thin Solid Films 480–481 (2005) 499– 502
[14] T. Markvart and L. Castaner, ”Solar cell materials, manufacture and operation”, Elsevier Ltd. (2005).
[15] A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F. J. Haug, M. Kalin, D. Rudmann and A. N. Tiwari, Prog. Photovolt: Res. Appl. 12 (2004) 93–111.
[16] T. N. U, Thin Solid Films 334 (1998) 192-195.
[17] A. Luque and S. Hegedus, ” Handbook of photovoltaic science and engineering”, John Wiley & Sons (2003).
[18] J. Muller, J. Nowoczin and H. Schmitt, Thin Solid Films 496 (2006) 364-370.
[19] S. B. Zhang, S. H. Wei and A. Zunger, Physiacal review letters 78, 21.
[20] M. A. Contreras, J. R. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, A. Franz, J. Keane, L. Wang, J. Scofield and R. Noufi, Conference Record of the 24th IEEE Photovoltaics Specialists Conference (1994) 68–75.
[21] M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon and R. Noufi, Prog. Photovolt: Res. Appl. 7 (1999) 311-316.
[22] K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward and A. Duda, Prog. Photovolt: Res. Appl. 11 (2003) 225-230.
[23] M. A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. L. Young, B. Egaas and R. Noufi, Prog. Photovolt: Res. Appl. 13 (2005) 209-216.
[24] O. Volobujeva, M. Altosaar, J. Raudoja, E. Mellikov, M. Grossberg, L. Kaupmees and P. Barvinschi, Sol. Energy Mater. Sol Cells 93 (2009) 11-14.
[25] F. Jiang and J. Feng, Thin Solid Films 515 (2006) 1950-1955.
[26] F. O. Adurodija, S. K. Kim, S. D. Kim, J. S. Song, K. H. Yoon, and B. T. Ahn, Sol. Energy Mater. Sol Cells 55 (1998) 225-236.
[27] W. Li, Y. Sun, W. Liu and L. Zhou, Sol. Energy 80 (2006) 191-195.
[28] R. Caballero and C. Guillen, Sol. Energy Mater. Sol Cells 86 (2005) 1-10.
[29] R. Caballero and C. Guillen, Thin Solid Films 403-404 (2002) 107-111.
[30] C. Guillen and J. Herrero, Vacuum 67 (2002) 659-664.
[31] T. L. Chu and S. S. Chu, J. Electrochem. Soc 131 (1984) 2182-2185.
[32] A. Gupta and S. Isomura, Sol. Energy Mater. Sol Cells 53 (1998) 385-401.
[33] S. D. Kim, H. J. Kim, K. H. Yoon and J. Song, Sol. Energy Mater. Sol Cells 62 (2000) 387-368.
[34] J. A. Groenink and P. H. Janse, Z. Phys. Chem. 110 (1978) 17.
[35] A. Gupta and S. Isomura, Sol. Energy Mater. Sol. Cells 53 (1998) 385-401.
[36] H. Bubert and H. Jenett, ”Surface and thin film analysis - principles, instrumentation, applications”, Wiley-VCH (2002).
[37] M. Ohring, “Materials science of thin films”, Academic Press (2002).
[38] J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, A. D. Ronig, C. E. Lyman, C. Fiori and E. Lifshin, ”Scanning electron microscope and X-ray microanalysis”, second ed. Plenum, New York (1992).
[39] T. L. Chu and S. S. Chu, J. Electrochem. Soc 131 (1984) 2182-2185.
[40] J. L. Garcia and C. Guillen, Thin Solid Films 517 (2009) 2240-2243.
[41] A. Brummer, V. Honkimaki, P. Berwian, V. Probst, J. Palm, R. Hock, Thin Solid Films 437 (2003) 297-307.
[42] Y. Hamakawa, “Thin-Film Solar Cells”, Springer (2003).
[43] P. D. Paulson, M. W. Haimbodi, S. Marsillac, R. W. Birkmire and W. N. Shafarman, J. Appl. Phys. 91 (2002) 10153-10156.
[44] N. G. Dhere, Sol. Energy Mater. Sol. Cells 90 (2006) 2181-2190.
[45] N. Ott, G. Hanna, U. Rau, J. H. Werner and H. P. Strunk, J. Phys.: Condens. Matter 16 (2004) S85–S89.
3.3.1 pp.46: S. A. Campbell, “The Science and Engineering of Microelectronic Fabrication”, Oxford, second ed. (2001) 305.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top