跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/10 00:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂宥萱
研究生(外文):Yu-Hsuan Lu
論文名稱:利用蝕刻技術於幾何形狀化磷化鋁銦鎵發光二極體光取出效率之改善
論文名稱(外文):Using Etching Technique to Enhance Light Extraction of AlGaInP-based LEDs by Geometric Shaping
指導教授:蘇炎坤蘇炎坤引用關係
指導教授(外文):Yan-Kuin Su
學位類別:碩士
校院名稱:國立成功大學
系所名稱:微電子工程研究所碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:76
中文關鍵詞:磷化鋁銦鎵發光二極體光取出效率光取出效率磷化鋁銦鎵發光二極體幾何形狀化幾何形狀化
外文關鍵詞:AlGaInP LEDGeometric ShapingAlGaInP LEDGeometric ShapingLight ExtractionLight Extraction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前為止,由於磊晶成長技術突破,可得到優良品質的結晶,因此發光亮度急速提升,已被用來生產高亮度的發光二極體。雖然四元系列的發光二極體內部量子效率可達 99% 以上,但外部量子效率還是很低。本論文將設計與製作形狀化發光二極體以增加光取出,進而增加發光二極體發光效率。
本論文設計一些新的發光二極體製作方法以提高發光效率。首先,利用濕蝕刻的方式蝕刻GaAs基板側面部分,藉由對GaAs基板側面進行蝕刻的動作,可以有效減低元件外圍缺陷造成的非輻射複合(non-radiative center)的影響,改善布拉格反射層(Distributed Bragg reflector, DBR)反射的限制形,透過蝕刻部分使得布拉格反射層無法反射的光可以穿透出來,進而提高發光效率。蝕刻的時間越長,對亮度提升越有幫助,但亮度的提昇有一極限值,於本研究中由數值計算來驗證,在蝕刻面積對元件面積比例超過13.4%之後,光強度會有衰減的情形產生。在 20毫安培驅動電流下,9mil及12mil發光二極體元件最高可分別提高 10.9%及18.7%的發光效率。
接著,利用CH4和BCl3的混和氣體以電感耦合電漿蝕刻(ICP)對磷化鎵窗口層(GaP window layer)進行乾式蝕刻,在磷化鎵窗口層上形成67°的斜邊,透過斜邊的設計可以減少全反射現象(Total intertal reflection, TIR)並增加光透射的機會。研究發現:蝕刻時間越久對亮度提升有一定的幫助,但操作電壓會有些微上升的趨勢。與傳統發光二極體比較,於20毫安培操作下,9mil的元件亮度可提升10.4%。
Recently, for the advance high brightness light emitting diodes (LEDs) has been obtained of epitaxy technology. The internal quantum efficiency of AlGaInP LED is up to 99% for a good quality crystalline, the external quantum efficiency is still very poor. Therefore, the output power of LED is still low compared to conventional light sources for high-flux lighting systems, requiring further improvements on LED light-output efficiency. The purpose of this thesis is by using various chip shapes of LEDs to improve the external quantum efficiency and light extraction.
In this thesis, we design some methods of fabrication-process to improve light-output. At first, remove partial of the GaAs sidewall substrate by wet etching technique. By etching GaAs sidewall substrate, the non-radiative center caused by defects around the optical devices would be reduced. Besides, the reflected photons comes from Distributed Bragg reflector (DBR) would be improved. The light out of the reflection angle of DBRs could pass through by the sidewall etching region, and enhanced the Luminous intensity. Longer etching time led to higher luminous intensity. However, the improvement was limited to the proportion of sidewall etching to chip size is being 13.4%, confined by numerical calculation. Efficiency was raised by 10.9% and 18.7% at an operation current of 20mA for chip size 9mil and 12mil sizes, respectively.
Followed, the fabrication process was dry etching on GaP window layer, which is implemented by inductively coupled plasma (ICP) employing the mixture of CH4 and BCl3 gases. The slanted sidewall angle was about 67°. The oblique sidewall could reduce total internal reflection and enhance the light extraction. It was found that the longer etching time led to higher luminous intensity at the cost of poor the electrical property, i.e., the forward voltage was slightly increased. Under the operation current of 20mA, the brightness of the shaped 9 mil AlGaInP LEDs was increased to 1.104 times as compared with the conventional LED.
Contents
Abstract (In Chinese) ----------------------------------- I
Abstract (In English) --------------------------------- III
Acknowledge (In Chinese) ---------------------------------V
Contents ------------------------------------------------VI
Table Captions ----------------------------------------- IX
Figure Captions ----------------------------------------- X
Chapter 1 Introduction ---------------------------------- 1
1-1 A Brief History of Light-Emitting Diodes (LED) -----1
1-2 Background of this Research and Motivation ---------- 4
1-2-1 Quantum efficiency -------------------------------- 4
1-3 Organization of this Thesis ------------------------- 6
Chapter 2 Principles of Light-emitting Diodes ----------- 9
2-1 Light Extraction ------------------------------------ 9
2-1-1 Introduction -------------------------------------- 9
2-1-2 Critical angle and Fresnel loss ------------------ 10
2-1-3 Design to improve extraction efficiency ---------- 12
2-2 Brief Principle of Etching ------------------------- 13
2-2-1 Liquid-Phase Etching ----------------------------- 14
2-2-2 Gas-Phase Etching -------------------------------- 16
Chapter 3 Fabrication Method and Process --------------- 27
3-1 Truncated-Tree shaped AlGaInP LED ------------------ 27
3-1-1 Motivation --------------------------------------- 27
3-1-2 Experimental details ----------------------------- 28
3-1-2-1 Etching solution ------------------------------- 28
3-1-2-2 Process of sidewall etching -------------------- 29
3-1-2-3 Process of Novel structure --------------------- 30
3-2 AlGaInP LED with a trapezoid window layer ---------- 31
3-2-1 Motivation --------------------------------------- 31
3-2-2 Experimental details ----------------------------- 32
3-2-2-1 Dry etching of Gap layer ----------------------- 32
3-2-2-2 Process of Novel structure --------------------- 34
Chapter 4 Result and Discussion ------------------------ 50
4-1 Truncated-Tree shaped AlGaInP LED ------------------ 50
4-1-1 Device Analysis ---------------------------------- 50
4-1-1-1 Optical Characteristics ------------------------ 50
4-1-1-2 Electrical Characteristics --------------------- 52
4-1-2 Summary ------------------------------------------ 53
4-2 AlGaInP LED with a trapezoid window layer ---------- 53
4-2-1 Device Analysis ---------------------------------- 53
4-2-1-1 Electrical Characteristics --------------------- 54
4-2-1-2 Optical Characteristics ------------------------ 56
4-2-2 Summary ------------------------------------------ 57
Chapter 5 Conclusion and Future Prospect --------------- 69
5-1 Conclusion ----------------------------------------- 69
5-2 Proscept ------------------------------------------- 70
Reference ---------------------------------------------- 72
[01] H. J. Round, “A note on carborundum,” Electrical World, vol. 19, p. 309, 1907.
[02] G. Desriau, “Scintillations of zinc sulfides with alpha-rays,” J. Chiie Physique, vol. 33, p. 587, 1936.
[03] H. Welker, “On new semiconducting compounds,” Zeitschrift fuer Naturforschung 7a, p. 744, 1952.
[04] H. C. Wang, “Investigation and Fabrication of AlGaInP and InGaN-based Light Emitting Diodes,” Dissertation for Doctor of Philosophy, 2004.
[05] Jr. N. Holonyak, and S. F. Bevacqua, “Coherent (visible) light eission from Ga(As1-xP x) junctions,” Appl. Phys. Lett., vol. 1, pp. 82, 1962.
[06] W. O. Groves, A. H. Herzog, and M. G. Craford, “The effect of nitrogen doping on GaAs1-xPx electroluminescent diodes,” Appl. Phys. Lett., vol. 19, p. 184, 1971.
[07] W. O. Groves, and A. S. Epstein, “Epitaxial deposition of III-V compounds containing isoelectronic impurities,” US Patent 4,001,056 issued Jan. 4, 1977.
[08] Th. Gessmann and E. F. Schubert, ” High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications,” J. Appl. Phys., vol. 95, 2203, 2004
[09] H. Rupprecht, J. M. Woodall, and G. D. Petit, “ Efficient visible electroluminescence at 300 K from Ga1-xAlxAs p-n junctions grown by liquid-phase epitaxy,” Appl. Phys. Lett. Vol. 11, pp. 81-83, 1967.
[10] J. Nishizawa, K. Suto, and T. Teshima, ”Minority-carrier lifetime measurements fo efficient GaAlAs p-n heterojunctions,” J. Appl. Phys. 48, 3484, 1977
[11] H. Ishiguro, K. Sawa, S. Nagao, H. Yamanaka, and S. Koike,” High efficient GaAlAs light emitting diodes of 660nm with a double heterostructure on a GaAlAs substrate,” Appl. Phys. Lett. 43, 1034, 1983
[12] K. Kobayashi, S. Kawata, A. Gomyo, I. Hino, and T. Suzuki, “Room-temperature cw operation of AlGaInP double-heterosturcture visible lasers,” Electron. Lett., vol. 21, p. 931, 1985.
[13] K. Itaya, M. Ishikawa, and Y. Uematsu, “636 nm room temperature cw operation by heterobarrier blocking structure InGaAlP laser diodes,” Electron. Lett., vol. 26, p. 839, 1990.
[14] C. P. Kuo, R. M. Fletcher, T. D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, “High performance AlGaInP visible light-emitting diodes,” Appl. Phys. Lett. 57, 2937, 1990
[15] F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, M. G. Craford, and V. M. Robbins, “Very high-efficiency semiconductor wafer bonded transparent substrate (AlxGa1-x )0.5In0.5P/GaP light-emitting diodes,” Appl. Phys. Lett., vol. 64, pp. 2839–2841, 1994.
[16] Yea-Chen Lee, Chia-En Lee, Hao-Chung Kuo, Tien-Chang Lu, and Shing-Chung Wang, “Enhancing the light extraction of (AlxGa1-x)0.5In0.5P-based light-emitting diode fabricated via geometric sapphire shaping,” IEEE PTL, vol. 20, no. 5, 2006
[17] Fletcher, Robert M., Kuo, Chihping, Osentowski, Timothy D., Robbins, Virginia M., “Light-emitting diode with an electrically conductive window,” U. S. Pat. 5, 008, 718, 1991.
[18] F. A. Kish, D. A. Vanderwater, and M. J. Peanasky, M. J. Ludowise, S. G. Hummel, and S. J. Rosner, “Low-resistance Ohmic conduction across compound semiconductor wafer-bonded interfaces,” Appl. Phys. Lett.,vol. 67, p. 2060, 1995.
[19] R. Windisch, B. Dutta, M. Kuijk, A. Knobloch, S. Meinlschmidt, S. Schoberth,P.Kiesel,G.Borghs,G.H.D�仡ler,andP.Heremans,“40% efficient thin-film surface-textured light-emitting diodes by optimization of natural lithography, ”IEEE Trans. Electron Devices, vol. 47, no. 7, pp. 1492–1498, Jul. 2000.
[20] Reiner Windisch, Barun Dutta, Maarten Kuijk, Alexander Knobloch, Stefan Meinlschmidt, Stefan Schoberth, Peter Kiesel, Gustaaf Borghs, Gottfried H. D�仡ler, and Paul Heremans, “40% Efficient Thin-Film Surface-Textured Light-Emitting Diodes by Optimization of Natural Lithography,”IEEE Trans. Electron Devices, vol. 47, p. 1492. 2000.
[21] Jianhua Zhao, Aihua Wang, Martin A. Green, and Francesca Ferrazza, “19.8% efficient ‘‘honeycomb’’ textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett., vol. 73, p. 1991, 1998.
[22] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “High-efficiency InGaAlP/GaAs visible light-emitting diodes,” Appl. Phys. Lett., vol.58, p. 1010, 1991.
[23] D. J. Lawrence, D. C. Abbas, D. J. Phelps, and F. T. J. Smith, “GaAs P LED’s with efficient transparent contacts for spatially uniform light emission,” IEEE Trans. Electron Devices, vol. ED-30, no. 6, pp. 580–585, Jun. 1983.
[24] H. Sugawara, K. Itaya, H. Nozaki, and G. Hatakoshi, High-brightness InGaAlP green light-emitting diodes,” Appl. Phys. Lett., vol. 61, p. 1775, 1992.
[25] T. Gessmann, E. F. Schubert, J. W. Graff, K. Streubel, and C. Karnutsch,“Omnidirectionalreflectivecontactsforlight-emittingdiodes,” IEEE Electron Device Lett.,vol. 24,no. 11,pp.683–685, Nov.2003.
[26] T. Gessmann, H. Luo, J. Q. Xi, K. P. Streubel, and E. F. Schubert, “Light-emitting diodes with integrated omnidirectionally reflective contacts,” in Proc. SPIE Int. Soc. Opt. Eng., 2004, vol. 5366, pp. 53–61.
[27] M. R. Krames, M. Ochiai-Holcomb, G. E. H�仜ler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J. -W. Huang, S. A. Stockman, F. A. Kish, M. G. Craford, T. S. Tan, C. P. Kocot, M. Hueschen, J. Posselt, B. Loh, G. Sasser, and D. Collins, “High-power truncated inverted pyramid (AlxGa1-x )0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency,” Appl. Phys. Lett., vol. 75, pp. 2365–2367, 1999.
[28] E. Fred Schubert,“Light Emitting Diodes and Solid-state Lighting,” HANDBOOK.
[29] C. C. Liu,“Design and Fabrication of High Brightness LEDs,” Dissertation for Doctor of Philosophy, 2004.
[30] J. M. Hwang, W. H. Hung, and H. L. Hwang, “Efficiency Enhancement of Light Extraction in LED with a Nano-Porous GaP Surface,” IEEE PTL, vol. 20, no. 8, 2008
[31] Y. H. Chung, ”Improvement on External Quantum Efficiency of AlGaInP-Based LEDs,” Thesis for Master of Science, 2003.
[32] Michael R. Krames, Oleg B. Shchekin, Regina Mueller-Mach, Gerd O. Mueller, Ling Zhou, Gerard Harbers, and M. George Craford, ”Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting,” IEEE JDT, vol. 3, no. 2, 2007
[33] H. C. Wang, ”Efficiency Improvement if GaN-based LEDs Using Novel Patterned Sapphire Substrate,” Thesis for Master of Science, 2008.
[34] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: Processing, defects, and devices” J. Appl. Phys., vol. 86, 1999
[35] J. Baur, B. Hahn, M. Fehrer, D. Eisert, W. Stein, A. Pl�零sl, F. Ku�榴n,H. Zull, M. Winter, and V. H�買LE, “InGaN on SiC LEDs for High Flux and High Current Applications,” Phys. Stat. Sol., no. 2, pp. 399-402, 2002
[36] Akihiko MURAI, Daniel B. THOMPSON, Christina Ye CHEN, Umesh K. MISHRA, Shuji NAKAMURA and Steven P. DENBAARS, “Light-Emitting Diode Based on ZnO and GaN Direct Wafer Bonding,” Jpn. J. Appl. Phys., vol. 45, no. 39, pp. L1045-1047, 2006
[37] Akihiko Murai, Daniel B. Thompson, Hisashi Masui, Natalie Fellows, Umesh K. Mishra, Shuji Nakamura, and Steven P. DenBaars, “Hexagonal pyramid shaped light-emitting diodes based on ZnO and GaN direct wafer bonding,” Appl. Phys. Lett., 89, 17116, 2006
[38] A. Murai , D. B. Thompson, H. Masui, N. Fellows, U. K. Mishra, S. Nakamura, and S. P. DenBaars, “Mega-cone blue LEDs based on ZnO-GaN direct wafer bonding,” Phys. Stat. Sol., no. 7, pp. 2756-2759, 2007
[39] Daniel B. THOMPSON, Akihiko MURAI, Michael IZA, Stuart BRINKLEY, Steven P. D ENBAARS, Umesh K. MISHRA, and Shuji NAKAMURA, “Hexagonal Truncated Pyramidal Light Emitting Diodes through Wafer Bonding of ZnO to GaN, Laser Lift-off, and Photo Chemical Etching,” Jpn. J. Appl. Phys., vol. 47, no. 5, pp. 3447-3449, 2008
[40] Akihiko MURAI, Daniel B. THOMPSON, Hirohiko HIRASAWA, Natalie FELLOWS, Stuart BRINKLEY, Choi Joo WON, Michael IZA, Umesh K. MISHRA, Shuji NAKAMURA, and Steven P. DENBAARS, “Pointed Cone Shaped Light-Emitting Diodes Based on ZnO-GaN Wafer Bonding,” Jpn. J. Appl. Phys., vol. 47, no. 5, pp. 3522-3523, 2008
[41] C. E. Lee, H. C. Kuo, Y. C. Lee, M. R. Tsai, T. C. Lu, S. C. Wang, and C. T. Kuo, “Luminance Enhancement of Flip-Chip Light-Emitting Diodes by Geometric Sapphire Shaping Structure,” IEEE PTL, vol. 20, no. 3, pp. 184-186, 2008
[42] Yea-Chen Lee, Hao-Chung Kuo, Senior Member, IEEE, Chia-En Lee, Tien-Chang Lu, and Shing-Chung Wang, “High-Performance (AlxGa1 – x)0.5In0.5P-Based Flip-Chip Light-Emitting Diode With a Geometric Sapphire Shaping Structure,”IEEE PTL, vol. 20, no. 23, pp.1950-1952, 2008
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top