跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 15:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡忠佑
研究生(外文):Chung-Yu Tsai
論文名稱:家長對孩童網路分級過濾系統使用意向之研究
論文名稱(外文):A Study on Using Intention of the Parents toward Internet Content Filtering Systems for Children
指導教授:魏健宏魏健宏引用關係
指導教授(外文):Chien-Hung Wei
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電信管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:89
中文關鍵詞:網路過濾系統分解式計畫行為理論孩童家長
外文關鍵詞:ParentsYouthsDecomposed TPBInternet Filtering Systems
相關次數:
  • 被引用被引用:23
  • 點閱點閱:581
  • 評分評分:
  • 下載下載:171
  • 收藏至我的研究室書目清單書目收藏:3
網際網路是現代人日常生活不可或缺的工具,台灣地區網際網路的使用率為全球第五名,根據98年底統計台灣地區曾經上網人數已達1,582萬人,而家戶上網普及率也約佔75.46%。其中絕大部分是兒童與青少年。然而,開放的網路環境存在許多潛藏威脅,如何避免兒童與青少年接觸不良的網路內容,成為網路安全重要趨勢之一。雖然網路分級制度已推行,但家長普遍採行網路過濾系統來防護孩童瀏覽不良網站之防護舉動仍不如預期。國家通訊傳播委員會於96年統計,有八成家長很擔憂未成年子女上網問題,但僅16%的家庭真正安裝過防堵不良網路內容的過濾軟體。此外,不同市民在地區差異與政府施政滿意度差異上對網路過濾系統採用意願是否也具有影響,也值得進一步探究。

為了提高網路過濾系統的使用,本研究透過分解式計畫行為理論,進行相關課題分析。此方法論之優點是它能將信念解構成多個構面型態,有助增強模式的解釋能力,並且容易瞭解信念與意向之間的關聯性,最後找出行為意願之重要影響因素。本研究以問卷調查方式蒐集孩童家長之意見,共發放500份問卷,有效樣本為417份,有效問卷率為83.4%。經過信度分析檢驗、結構方程式分析以及相關統計檢定分析後,得知網路分級過濾系統使用意向之影響因素,最後提出結論與建議。

研究結果顯示,影響「採用意願」最顯著因素是「採用態度」,「知覺行為控制」次之、「主觀規範」最後。其中「採用態度」會受到「知覺有用」與「相容性」影響;「知覺行為控制」會受到「資訊科技自我效能」影響;「主觀規範」會受到「同儕影響」影響;此外,都市地區的「知覺行為控制」對「採用意願」具顯著影響;南部地區「採用意願」會顯著受「主觀規範」影響;且「資訊科技自我效能」會顯著影響「知覺行為控制」;施政滿意度高的地區「資訊科技自我效能」與「政府政策助益環境」皆會顯著影響「知覺行為控制」。此等結果能提供相關關鍵因素給政府、相關機構與服務業者做為推廣時之行銷參考。
With the increasing population of internet users, almost all information is transmitting on the websites. According to the statistics, there are approximately 15.8 million people ever surfing the internet in Taiwan, and the household access rate of internet is around 75%. Although using internet is convenient for people to get knowledge, immature children and youths surfing the internet without supervision of parents at home may be dangerous. In order to preserve a safe environment of internet for minors, National Communications Commission (NCC), the authority regulating the telecommunications and broadcasting sector in Taiwan, puts much effort in recent years to guide the public taking technology methods to prevent youths from encountering pornographic and other inappropriate sexual material online. Filtering and blocking systems are some of the most frequently recommended prevention devices.The main purpose of this study is to realize the intention of parents using the internet filtering systems.

This study applies Decomposed TPB to understand the intention factors including parents control to attitude, subjective norm and perceived behavior control. A total of 417 valid questionnaires were obtained and structural equation modeling (SEM) was applied. The results of empirical analysis by means of LISREL 8.52 indicate that attitude has the greatest positive impact on the intention of parents toward internet filtering systems. Perceived behavioral control is the secondary factor followed by subjective norm. Perceived usefulness and compatibility has positive effect to attitude, while perceived ease of use shows no significant effect. Information technology self-efficacy has positive effect to perceived behavioral control. However, government policy facilitating condition has no significant effect, while peer influence has positive effect to subjective norm. In addition, the behavioral intention would be also affected positively by the perceived behavioral control in urban area. In contrast to northern areas, the behavioral intention and perceived behavioral control would be influenced positively by the subjective norm and information technology self-efficacy respectively in southern Taiwan. The perceived behavioral control would be stimulated significantly by the information technology self-efficacy and government policy facilitating condition at the city with higher satisfaction of governor’s performance. Findings of this study will be very helpful on both design and implementation strategies to government agencies and internet service providers.
摘要…………………………………………………………………………………….i
Abstract.……………….….……………..……………………………………….ii
致謝……………………………………...……………………………………………iii
目錄……………………………………………………………….…………………..iv
圖目錄………………………………………………………………………………. .vi
表目錄………………………………………………………………………………. vii
第1章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 研究內容 4
1.4 研究對象與範圍 4
1.5 研究流程 5
第2章 文獻回顧 7
2.1 網路分級制度 7
2.1.1 網際網路發展 7
2.1.2 我國網際網路發展 8
2.1.3 網路分級制度 8
2.1.4 各國相關網路分級推行方式 9
2.1.5 網路過濾方式簡介 10
2.2 消費者行為理論 14
2.2.1 理性行為理論 14
2.2.2 科技接受模式 15
2.2.3 創新擴散理論 16
2.2.4 計劃行為理論 17
2.2.5 分解式計劃行為理論 19
2.2.6 各行為理論實證分析研究之比較 22
2.3 政府政策助益環境 26
2.4 空間差異 27
2.5 施政滿意度 28
2.6 小結 29
第3章 研究設計 30
3.1 研究架構 30
3.2 研究假說 32
3.3 問卷設計流程 37
3.4 問卷尺度衡量 37
3.5 操作型定義、構面與問項 38
3.6 問卷調查方法 43
3.6.1 抽樣方法 43
3.6.2 樣本數量 43
3.6.3 問卷前測 44
3.7 資料分析方法 44
3.7.1 敘述性統計分析 44
3.7.2 信度分析 44
3.7.3 結構方程模式 45
第4章 資料分析 47
4.1 基本敘述性統計 47
4.2 信度分析 51
4.3 線性結構方程模式之建構與分析 53
4.3.1 整體適合度分析 54
4.3.2 建構信度分析 55
4.3.3 區別效度 56
4.3.4 模式分析 57
4.4 空間差異與施政滿意度差異之分析 63
4.4.1 台南市 63
4.4.2 台南縣 67
4.4.3 台北市 70
4.4.4 城鄉差異 73
4.4.5 南北差異 74
4.4.6 施政滿意度差異 75
第5章 結論與建議 77
5.1 研究結論 77
5.1.1 對採用意願的影響因素 77
5.1.2 其他對採用意願的影響因素 78
5.1.3 其他結論 79
5.2 管理實務上之建議 81
5.3 後續研究建議 82
文獻回顧……………………………………………………………………………..83
附錄 正式問卷. .…………………………………………………………………….90
1.comScore Network. (2006, May 4). 694 Million People Currently Use the Internet Worldwide According To comScore Networks. Retrieved October 5, 2008, from:
http://www.comscore.com/Press_Events/Press_Releases/2006/05/comScore_Launches_World_Metrix/(language)/eng-US.
2.Electronic Frontiers Australia網站:http://www.efa.org.au/Issues/Censor/cens2.html.
3.Top Ten REVIEWS網站:http://internet-filter-review.toptenreviews.com/.
4.向網路成癮SAY NO(民95年7月1日)。白絲帶電子報。民98年5月20日,取自:http://www.rtv.nccu.edu.tw/vhuang/cap/4/cap4.htm.
5.兒少打玩網路遊戲之現況探討(民97年4月8日)。財團法人台灣網站分級推廣基金會部落格。民98年5月20日,取自:http://www.wretch.cc/blog/TICRF/11438182.
6.青少年線上安全(民96年9月14日)。資安人科技網。民98年5月20日,取自:http://www.mos.org.tw/1gc/epaper/hacker_0709301.htm.
7.財團法人台灣網站分級基金會網站:http://www.ticrf.org.tw/chinese/news.htm.
8.教育部全球資訊網站:http://www.edu.tw/news.aspx?news_sn=1763&pages=0.
9.黃維助、林曉雲(民98年2月21日)。自由時報電子報。5歲幼教免費 100學年度上路。民98年5月20日,取自:http://www.libertytimes.com.tw/2009/new/feb/21/today-life13.htm.
10.國家通訊傳播委員會網站:http://www.ncc.gov.tw/kidsafety/sitemap.asp.
11.調查:三成兒童上過色情網 五成覺得被騙(民95年4月3日)。ZDNet電子報。民98年5月20日,取自:http://www.zdnet.com.tw/news/comm/0,2000085675,20105403,00.htm.
12.賴槿霙(民97年9月16日)。不得不正視的問題-兒童色情持續成長 INHOPE 網路違法資訊趨勢報告。內政部兒童局台灣終止童妓協會網站。民98年5月20日,取自:http://blog.yam.com/ecpatblog/article/15760857.

中文資料
1.江明修,「各國行政改革之比較及對我國之啟示─面對千禧年政黨輪替後的新思維」,新世紀的行政理論與實務學術研討會暨張潤書教授榮退紀念文集發表會,民國89年4月。
2.呂亞力,人事與政策,台灣人看政治,民國87年,台北:中華徵信所。
3.何東波,「國土規劃空間結構形塑的議題與策略」,國土規劃論壇學術研討會論文集,民國93年,3-1-3-18頁。
4.吳英德,台灣地區都市層級間遷徙選擇之研究─兼論選擇者之性別差異及世代差異,國立成功大學都市計劃研究所碩士論文,民國94年6月。
5.吳佩玲(無日期)。2008 年我國家庭寬頻、行動與無線應用現況與需求調查。
資策會。民98年4月29日,取自http://www.teema.org.tw/upload/ciaupload/980312-1.pdf.
6.林智揚、黃國禎,「網站自動化分級管理系統之研製」,資訊管理學報,8卷1期,民國90年7月,123-142頁。
7.柯文欣,台灣地區區域發展差距之再檢視,國立成功大學都市計劃研究所碩士論文,民國98年2月。
8.洪佳莉,社會行銷策略之宣導效果檢視:以台灣網站分級推廣基金會為例,天主教輔仁大學大眾傳播學研究所碩士論文,民國96年1月。
9.洪殷琪,網路色情資訊管制與分級制度之研究,國立台北大學法律系碩士論文,民國95年。
10.范傑臣,「從多國網際網路內容管制政策談台灣網路規範努力方向」,資訊社會研究,2卷,民國91年1月, 205-223頁。
11.唐富藏,台灣區域所得分配變動之分析,台北:中央研究院經濟研究所,民國67年。
12.財團法人台灣網路資訊中心,九十七年度台灣寬頻網路使用調查報告,民國97年1月。
13.陳佳惠,我國推展電子化政府的顧客關係管理之行為意圖探討,國立東華大學企業管理學系碩士論文,民國96年7月。
14.莊育秀,網路內容分級制度之探討,國立台灣科技大學資訊管理系碩士論文,民國95年6月。
15.張四明,「民意調查的科學基礎、政治功能與限制:以我國政府首長施政滿意度調查為例」,行政暨政策學報,2期,民國89年10月,1-39頁。
16.國家通訊傳播委員會,“推動網站內容分級制度成果”民調報告,民國96年2月。
17.黃秀端,「兩大黨對決局面儼然成形」,臺灣民主季刊,3卷,4期,民國95年12月,181-190頁。
18.黃國敏,「政策民意與施政滿意度之探討:桃園縣政府個案研究」,空大行政學報,15期,民國94年4月,1-34頁。
19.楊勝雄,論網際網路上色情資訊之管制措施對言論自由之限制─以電腦網路內容分級處理辦法為中心,國立成功大學法律學系碩士論文,民國94年7月。
20.劉宇華,論網路內容之規範管理─以我國網路分級制度為中心,世新大學法律研究所碩士論文,民國95年8月。
21.蕭怡靖、游清鑫,「施政表現與投票抉擇的南北差異─2006年北高市長選舉的探討」,臺灣民主季刊,5卷,2期,民國97年6月,1-25頁。
22.蕭家興,「台灣地區空間差異與區域發展政策」,國土規化建設論文集,民國91年。

英文資料
1.Adams, D. A., Nelson, R. R. & Todd, P. A. (1992). Perceived Usefulness, Ease of Use, and Usage of Information Technology: A Replication. MIS Quarterly, 16(2), 227-247.
2.Ajjan, H. & Hartshorne, R., (2008). Investigating Faculty Decision to Adopt Web 2.0 Technologies: Theory and Empirical Tests. Internet and Higher Education. 11, 71-80.
3.Ajzen, I. & Fishein, M. (1980). Understanding Attitude and Predicting Social Behavior, Englewood Cliffs, N.J.: Prentice-Hall.
4.Ajzen, I. & Madden, T. J. (1986). Attitudes, Intentions, and Perceived Behavioral Control. Journal of Experimental Social Psychology, 22, 453-474.
5.Ajzen, I. (1991). The Theory of Planned Behavior. Organizational Behavior and Human Decision Process, 50, 179-211.
6.Bandura, A. (1977). Self-Efficacy: Toward a Unifying Theory of Behavioral Change. Psychological Review, 84(2), 112-127.
7.Bandura, A. (1982). Self-Efficacy Mechanism in Human Agency. American Psychologist, 37(2), 122-147.
8.Bemelmans-Videc, M. L., Rist, R. C., & Vedung, E. (1998). Carrots, Sticks, and Sermons: Policy Instruments and Their Evaluation, New Brunswick, New Jersey and London: Transaction Publishers.
9.Beynon-Davies, P. (2009). Formated technology and informated action: The nature of information technology. International Journal of Information Management, 29, 272-282.
10.Bhattacherjee, A. (2000). Acceptance of E-commerce service: the case of electronic brokerages, IEEE Transactions on System, Man, and Cybernetics-Part A: Systems and Humans, 20(4), pp.411-420.
11.Christian, J. & Abrams, D. (2003). The Effects of Social Identification, Norms and Attitudes on Use of Outreach Services by Homeless People. Journal of Community and Applied Social Psychology, 13(2), 138–157.
12.Compearu, D. R. & Higgins, C. A. (1995a). Application of Social Cognitive Theory to Training for Computer Skills. Information Systems Research, 6(2), 118-143.
13.Compearu, D. R. & Higgins, C. A. (1995b). Computer Self-Efficacy: Development of a Measure and Initial Test. MIS Quarterly, 19(2), 189-211.
14.Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests, Psychometrika, 16, 297-334.
15.Davis, D. (1989). Perceived Usefulness, Perceived Ease of Use and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340.
16.Engel, J. F., Blackwell, R. D. & Kollat, P. W. (2000). Consumer Behavior, 8th ed., NY: Rinehart and Winstone.
17.Fielding, K. S., McDonald, R. & Louis, W. R. (2008). Theory of Planned Behaviour, Identity and Intentions to Engage in Environmental Activism. Journal of Environmental Psychology, 28(4), 318-326.
18.Fishein, M. & Ajzen, I. (1975). Attitude and Opinions. Annual Review of Psychology, 23, 487-544.
19.Fornell, C. and Larcker, D. (1981). Evaluting structural equation models with unobservable and measurement error, Journal of Marketing Research, 18 (1), 39-50.
20.Fu, J. R., Chao, W. B. & Farn, C. K. (2006). Acceptance of Electronic Tax Filing: A Study of Taxpayer Intentions. Information and Management, 43(1), 109-126.
21.Gossum, P. V., Ledene, L., Arts, B., Vreese, R. D., Langenhove, G. V. & Verheyen, K. (2009). New environmental policy instruments to realize forest expansion in Flanders (northern Belgium): A base for smart regulation? Land Use Policy, 26, 935-946.
22.Greenfield, P., Rickwood, P. & Tran, H. C. (2001, September). Effectiveness of Internet Filtering Software Products. NetAlert and the Australian Broadcasting
Authority. Retrieved May 25, 2008, from http://www.acma.gov.au/webwr/aba/about/recruitment/filtereffectiveness.pdf.
23.Guttman, R. H., Moukas, A. G. & Maes, P. (1998). Agent-Mediated Electronic Commerce: A Survey. Knowledge Engineering Review, 13, 147-159.
24.Hair, J. F. Anderson, R. E., Taltam, R. L.and Black, W. C. (1998). Multivariate Data Analysis with Readings, 5th ed., NY: Prentice-Hall.
25.Hong, W., Thong, J. Y. L., Wong, W. M. & Tam, K. Y. (2002). Determinants of User Acceptance of Digital Libraries: An Empirical Examination of Individual Differences and System Characteristic. Journal of Management Information Systems, 18(3), 97-124.
26.Hu, P. J. H., Clark, T. H. K. & Ma, W. W. (2003). Examining Technology Acceptance by School Teachers: A Longitudinal Study. Information and Management, 41, 227-241.
27.Huh, H. J., Kim, T., & Law, R., (2009). A Comparison of Competing Theoretical Models for Understanding Acceptance Behavior of Information Systems in Upscale Hotel. International Journal of Hospitality Management, 28, 121-134.
28.Hung, S. Y., Chang, C. M., (2005). User Acceptance of WAP Services: Test of Competing Theories. Computer Standards & Interfaces. 27, 359-370.
29.Kim, L. (1997). Imitation to Innovation: the Dynamics of Korea’s Technological Learning, Harvard Business School Press, Boston.
30.Knill, C. & Lenschow, A. (1998). Coping with Europe: the impact of British and German administrations on the implementation f EU environmental policy. Journal of European Public Policy, 5(4), 595-614.
31.Kwahk, K. Y. & Lee, J. N. (2008). The Role of Readiness for Change in ERP Implementation: Theoretical Bases and Empirical Validation. Information & Management, 45, 474-481.
32.Lenhart, A. (2007, December 6). American Teens & Online Safety: What the research is telling us. Paper presented at the Family Online Safety Institute Annual Conference. Retrieved May 20, 2009, from http://www.pewinternet.org/Presentations/2007/American-Teens-and-Online-Safety.aspx.
33.Liao, C. C., Chen, J. L. & Yen, D. C. (2007). Theory of Planning Behavior (TPB) and Customer Satisfaction in the Continued Used of E-Service: An Integrated Model. Computers in Human Behavior, 23(6), 2804-2822.
34.Lin, H. F., (2007). Predicting Consumer Intention to Shop Online: An Empirical Test of Competing Theories. Electronic Commerce Research and Application, 6, 433-442.
35.Lovelock, C. H. (1996). Developing Global Strategic for Service Business, California Management Review, 38(2), 64-86.
36.Martin, L. & Kerrner, P. (1996). Measuring the Performance of Human Service Programs. CA: Sage.
37.Mitchell, K. J., Finkelhor, D. & Wolak, J. (2005). Protecting Youth Online: Family Use of Filtering and Blocking Software, Child Abuse & Neglect, 29, 753-765.
38.Moore, G. & Benbasat, I. (1991). Development of an Instrument of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. Information Systems Research, 2(3), 192-222.
39.Nasco, S. A., Toledo, E. G., & Mykytyn, P. P. (2008). Electronic commerce Adoption in Chilean SMEs. Journal of Business Research, 61(6), 697-705.
40.Nunnally, J. (1978). Psychometric Theory. 2nd ed., NY: McGraw-Hill.
41.O’cass, A. & Fenench, T. (2003). Web Retailing Adoption: Exploring the Nature of Internet Users Web Retailing Behavior. Journal of Retailing and Consumer Service, 10, 81-94.
42.O’Keefe, R. M. & McEachern, T. (1998). Web-Based Customer Decision Support System. Communications of the ACM, 41(3), 71-78.
43.Peter, P. J. & Olson, C. J. (2000). Consumer Behavior and Marketing Strategy. 5th ed., NY: McGraw-Hill.
44.René, V. V. V. (2009). Community facilitation of problem structuring and decision making processes: Experiences from the EU LEADER+ programme. European Journal of Operational Research, 199(3), 803-810.
45.Rogers, E. M. (1983). Diffusion of Innovations. 3rd ed., NY: Free Press.
46.Sarah, H. J. (2008, Aril 2). Internet Filtering Software Test: Barracuda, CyberPatrol, FilterGate, & WebSense. San José Public Library. Retrieved May
25, 2008, from http://www.sjlibrary.org/about/sjpl/commission/agen0208_report.pdf.
47.Smarkola, C., (2008). Efficacy of a Planned Behavior Model: Beliefs that Contribute to Computer Usage Intentions of Student Teachers and Experienced Teachers. Computers in Human Behavior, 24, 1196-1215.
48.Taylor, S. & Todd, P. A. (1995a). Decomposition and Crossover Effects in the Theory of Planned Behavior: A Study of Consumer Adoption Intentions. International Journal of Research in Marketing, 12, 137-155.
49.Taylor, S. & Todd, P. A. (1995b). Understanding Information Technology Usage: A Test of Competing Models. Information Systems Research, 6(2), 144-176.
50.Teo, T. S. H. & Pok S. H. (2003). Adoption of WAP-Enabled Mobile Phones among Internet Users. Omega, 31(6), 483-498.
51.Thong, J. Y. L., Hong, W. & Tam, K. Y. (2002). Understanding User Acceptance of Digital Libraries: What are the Roles of Interface Characteristics, Organizational Context, and Individual Differences? Journal of Human-Computer Studies, 57(3), 215-242.
52.To, P. L., Liao, C., Chiang, J. C., Shih, M. L. & Chang, C. Y., (2008). An Empirical Investigation of the Factors Affecting the Adoption of Instant Messaging in Organizations. Computer Standards & Interfaces, 30, 148-156.
53.Tornatzky, L. G. & Klein, K. J. (1982). Innovation Characteristics and Innovation Adoption-Implementation: A Meta-Analysis of Findings. IEEE Transactions on Engineering Management, 29(1), 28-45.
54.Van den Berg, L., Drewett, R., Klassen, L. H., Rossi, A. & Vijverberg, C. H. T. (1982). A Study of Growth and Decline. Urban Europe. Vol. 1., Oxford: Pergamon Press.
55.Venkatesh, V. & Davis, D. (1996). A Model of the Antecedents of Perceived Ease of Use: Development and Test. Decision Sciences, 27(3), 451-481.
56.Venkatesh, V. & Brown, S. A. (2001). A longitudinal Investigation of Personal Computers in Homes: Adoption Determines and Emerging Challengers, MIS Quarterly, 25(1), 71-102.
57.Watson, D., Juster, R. & Johnson, G. (1991). Institutionalized Use of Citizen Surveys in the Budgetary and Policy-making Processes: A Small City Case Study, Public Administration Review, 52(6), 604-610.
58.Williams, T. G. (1997). Consumer Behavior: Concepts and Strategies, St. Paul Minn: West Information Pub. Group.
59.Wu, S. L. (2006). A Comparison of the Behavior of Different Customer Clusters Towards Internet Bookstores, Information & Management, 43(8), 986-1001.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top