跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/10 23:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張湄萱
研究生(外文):Mei-Hsuan Chang
論文名稱:國內第三代行動電話服務之需求預測
論文名稱(外文):Forecasting Demand for 3G Mobile Services in Taiwan
指導教授:廖俊雄廖俊雄引用關係
指導教授(外文):Chun-Hsiung Liao
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電信管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:93
中文關鍵詞:二項羅吉特模式彈性巴斯擴散模型3G服務之需求預測
外文關鍵詞:Binary logit modelForecasting demand of 3G servicedemand elasticityBass diffusion model
相關次數:
  • 被引用被引用:12
  • 點閱點閱:735
  • 評分評分:
  • 下載下載:233
  • 收藏至我的研究室書目清單書目收藏:1
國內第三代行動電話(3G)服務業者背負著沉重的執照費用與投資成本下,對於未來3G服務需求應有了解的迫切。本研究透過二項羅吉特模型(Binary logit model, BL),探討可能影響3G服務之因素與有意願選擇3G服務之機率,並與巴斯擴散模型(Bass diffusion model)相結合來預測國內用戶對於3G服務的需求,冀望提供國內3G業者在擬定行銷策略與投資策略上成本效益分析之參考與建議。
經問卷收集與實證分析後有二大重要結果,一為探討可能影響國內消費者使用3G服務之因素,分別為「3G手機特性」強調手機在使用上的方便性與容易操作性,「3G服務品質」針對通話品質與業者服務口碑,強調服務品質為行動通訊最基本的要求,「3G使用成本」包含月租費、語音通話費率、影像通話費率、數據傳輸費率與優惠方案的搭配,強調當使用成本越低3G服務的使用意願越高,最後發現有高意願使用3G服務的使用者為「高收入」與「高行動電話費用」特性的群體,供行動電話服務業者參考。二為國內未來3G服務需求之預測,發現民國96年至民國100年將是3G服務發展迅速的成長期,3G服務的普及率也將會從24.56%提升至101.08%;而從民國101年至民國106年3G服務正式進入成熟期,普及率從始終維持100.05%與2G服務的發展況相似,可以知道3G服務將是演變為未來趨勢而取代2G市場。
Taiwan 3G telecomunications operators with heavy burden of license expenses have to invest huge amount of costs in network construction in recent years. There should exist motives for them to understand the future demand of using 3G services. The study adopts binary logit model to analyze the influential factors and probability of using 3G service. Together with Bass diffusion model, this study then forecasts the annual demand of 3G service during the ten-year period of 2009 to 2018. The results hopefully provide useful suggetions to 3G operators while making operating strategy and marketing strategy.
The results are summarized as follow. The influential factors of 3G service usage include〝3G handset features〞,〝3G service quality〞and〝3G service cost〞. That is, more convenient and easilier manipulative handset, higher call quality and better operator’s reputation, and lower monthly rental/service rate and more attractive promotion increase mobile subscribers to use 3G service. Further, mobile subscribers with high income and high monthly expenses for service tend to switch to the 3G service. In the forecasting of future 3G service demand, it is found that the service will dastically grow during 2007 to 2011 with the 3G penetration rate from 24.86% to 101.08%. Then the 3G service will maintain in the highly mature status. Such a growth pattern is similar to that of 2G service.
目 錄
表 目 錄............................................. V
圖 目 錄..............................................VI
第一章 緒論..........................................1
1.1 研究背景與動機...................................1
1.2 研究目的.........................................4
1.3 研究範圍與限制...................................5
1.4 研究流程.........................................5
第二章 文獻回顧......................................8
2.1 第三代行動電話服務之市場現況與服務應用...........8
2.2 科技產品與服務需求之相關文獻.....................20
2.3 文獻模式相關變數.................................34
第三章 研究方法......................................39
3.1 研究架構.........................................39
3.2. 因素分析.........................................41
3.3 羅吉特模型.......................................41
3.4 巴斯擴散模型.....................................47
3.5 問卷設計與前測...................................51
第四章 實證分析......................................54
4.1 抽樣設計與樣本統計分析...........................54
4.2 因素分析與信度分析...............................58
4.3 二項羅吉特個體選擇模式 ...........................63
4.4 巴斯擴散模型.....................................69
第五章 結論與建議....................................77
5.1 結論.............................................77
5.2 建議 .............................................79
參考文獻..............................................81
附錄一 前測問卷信度分析結果.........................86
附錄二 正式問卷......................................87
附錄三 民國87年3月至民國97年12月人口數月資料與2G服務的月銷售資料 .............................................. 91
一、中文部份
《資料參考》
1.王慶瑞,1999,「運輸系統規劃增訂版」,正揚出版社,頁297-337
2.李施琪,1999,「多變量分析」,華泰書局,頁410-412
3.李書齊,2006,「電信業者要清楚未來敵人面相」,今週刊,8月刊,頁78-806.
4.吳萬益,2000,「企業研究方法」二版,華泰書局,頁283-284
5.林聰明,1981,「指數平滑法之選擇與應用」,華泰書局,頁265-276
6.林正峰,2004,「全球電信業者加速布局3G這回來真的」,數位時代,92期,頁68-71
7.宋彥青,2002,行動電話消費行為之研究—業者、費率方案與使用量混合需求模式,成功大學交通管理科學研究所碩士論文,民國91年
8.段良雄, 1989,「運輸規劃與決策」, 國立成功大學社會科學學報,2期, 頁1-15
9.陳仲興,2006,「鴻海律師林羿成轉業賣數位音樂」,今週刊,7月刊,頁86-88
10.陳志偉,2001,第三代行動電話市場區隔與轉移意願之研究—以台南地區大學生族群為例,成功大學交通管理科學研究所碩士論文
11.張嘉訓,2002,高科技產品多代擴散模型之研究—以DRAM為例,真理大學管理科學研究所碩士論文
12.劉佳穎,2003,國產汽車市場佔有率預測模型之研究,長庚大學企業管理研究所碩士論文
13.羅玳珊,2006(a),「掀起3G時代序幕」,台灣通訊雜誌,4月,頁14-16
14.羅玳珊,2006(b),「整合通訊興起網通大廠各自出擊」,台灣通訊雜誌,4月,頁49-51。
15.羅玳珊,2006(c),「3G業者積極推廣應用發展各有巧妙」,台灣通訊雜誌,8月,頁40-41
16.羅海資,2006,「3G侵攻戰現況解析—探訪威寶電信總經理王柏堂」,台灣通訊雜誌,8月,頁12-14
17.謝雅婷,2004,「行動電話加值服務3G在手科技運用一手掌握」,卓越雜誌,第244期,頁84-8
《網路參考》
1. 中華電信網站http://www.cht.com.tw/
2. 手機王網站http://www.sogi.com.tw/index.asp/
3. 內政部統計處 http://www.moi.gov.tw/stat
4. 台灣大哥大網站http://www.tcc.net.tw/main/
5. 台灣經濟研究院產經資料庫http://tie.tier.org.tw/tie/index.
6. 交通部電信總局全球資訊網 http://www.dgt.gov.tw/
7. 東方消費者行銷資料庫(E-ICP, Eastern Integrated Consumer Profile) http://www.isurvey.com.tw
8. 科技產業資訊網 http://cdnet.stpi.org.tw/techroom/MemberNews.htm
9. 威寶電信網站 http://www.vibo.com.tw/index.jsp/
10. 亞太行動寬頻網站 http://www.apbw.com/
11. 國家通訊傳撥委員會(NCC) http://www.ncc.tw/
12. 國際電信聯盟http://www.asia2002.gov.hk/chinese/main.html
13. 國際數據資訊(IDC) http://www.idc.com.tw/
14. 資策會網站 http://www.find.org.tw/find/home.aspx/
15. 遠傳電信網站 http://www.fetnet.net/
16. 聯合新聞網 http://udn.com/NEWS/mainpage.shtml/
二、英文部分
1. Akaike, H., 1970, Statistical predictor identification, Annals Instit, Stat. Math, 20, 203-217.
2. Akaike, H., 1974, A new look at statistical model identification, IEEE Trans. Auto. Control, 19, 716-723.
3. Atsushi, I., 2005, Estimating demand for cellular phone services in Japan. Telecommunications Policy, 29(1), 3-17.
4. Bass, F.M., 1969, A new product growth for model consumer durables, Management Science (pre-1986), 15(5), 215-227.
5. Birke, D. and Swann, G.M., 2004, Network effects in mobile telecommunications: An empirical analysis, JEL classication:D12, L96, M31, 1-29.
6. Danaher, P.J., Hardie, J.R., Bruce G.S. and Putsis, W.P., 2001, Marketing-mix variables and the diffusion of successive generations of a technological innovation, Journal of Marketing Research, 38(4), 501-51.
7. Doganoglu, T. and Grzybowski, L., 2005, Estimating network effects in mobile telephony in Germany, Journal of Economic Literature Classification, 96(13), 1-22.
8. Engle, R.F. and Brown, S., 1995, “Model selection for forecasting”, Journal of Computation in Statistics, vol. 51, 341-365.
9. Engle, R.F., Granger C.W., Rice J. and Weiss A., 1986, Semi-parametric estimates of the relation between weather and electricity sales, J. Amer. Stat. Assoc, 81.
10. Fisher, J.C. and Pry, R.H., 1971, A simple substitution model of technological change, Technological Forecasting and Social Change, 3, 75-88.
11. Fourt, L.A. and Woodlock, J.W., 1960, Early prediction of market success for new grocery products, Journal of Marketing, 25(2), 31-38.
12. Graven, P. and Wahba, A., 1979, Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation, Numer Math, 31, 377-403.
13. Ganesh, J., Arnold, M.J. and Reynolds, K.E., 2000, Understanding the customer base of service providers: An examination of the differences between switchers and stayers, Journal of Marketing, 64(3), 65-87.
14. Hannan, E. J. and Quinn B., 1979, The determination of the order of an autoregression, J. Royal Stat. Society, Series b 41, 190-195.
15. Iimi, A., 2005, Estimating demand for cellular phone services in Japan, Telecommunications Policy, 29, 3-23.
16. Islam, T. and Meade, N., 1997, The diffusion of successive generations of a technology: a more general model, Technological Forecasting and Social Change, 56(2), 49-60.
17. Jun, D.B. and Park, Y.S., 1999, A choice-based diffusion model for multiple generations of products, Technological Forecasting and Social Change, 61(1), 45-58.
18. Jun, D.B., Kim, S.K., Park, M.H., Bac, M.S., Park, Y.S. and Joo, Y.J., 2000, Forecasting demand for low earth orbit mobile satellite service in Korea, Telecommunication Systems, 14, 311-319.
19. Jun, D.B., Kim, S.K., Park, Y.S., Park, M.H. and Wilson, A.R., 2002, Forecasting telecommunication service subscribers in substitutive and competitive environments, International Journal of Forecasting, 18, 561-581.
20. Kim, H.S. and Kwon, N., 2003, The advantage of network size in acquiring new subscribers:a conditional logit analysis of the Korean mobile telephony market, Information Economics and Policy, 15, 17-33.
21. Kim, N., Chang, D.R. and Shocker, A.D., 2000, Modeling intercategory and generational dynamics for a growing information technology industry, Management Science, 46(4), 496-512.
22. Lederer, A.L., Maupin, D.J., Sena, M.P. and Zhuang, Y., 2000, The technology acceptance model and the world wide web, Decision Support System, 29, 269-282.
23. Kim, Y.B., SEO, S.Y. and LEE, Y.T., 1999, A substitution and diffusion model with exogenous impact: forecasting of IMT-2000 subscribers in Korea, IEEE, 99, 948-952.
24. Mahajan, V. and Muller, E., 1996, Timing, diffusion, and substitution of successive generations of technological innovations: The IBM mainframe case. Technological Forecasting and Social Change, 51(2), 109-132.
25. Mansfield, E., 1961, Technical change and the rate of imitation, Econometrica (pre-1986), 29(4), 741-766.
26. Norton., J.A. and Bass, F.M., 1987, A diffusion theory model of adoption and substitution for successive generations of high technology products, Management Science, 33(9), 1069-1082.
27. Nunnally, J.C. and Bernstein, I.H., 1994, New York: McGraw-Hill, Psychometric Theory 3rd E.
28. Rice, J., 1984, Bandwidth choice for nonparametric Kernel regression, Annals of Stat, 12, 1215-1230.
29. Rodini, M., Ward, M.R. and Woroch, G.A., 2002, Going mobile:substitutability between fixed and mobile access, Competition in Wireless: Spectrum Service and Technology Wars, 1-30.
30. Schwarz, G., 1978, Estimating the dimension of a model, Annals of Stat, 6.
31. Shibata, R., 1981, An optimal selection of regression variables, Biometrika, 68.
32. Schmittlein, D.C. and Mahajan, V., 1982, Maximum likelihood estimation for an innovation diffusion model of new product acceptance, Marketing Science, 1(1), 57-78.
33. Srinivasan, V. and Mason, C.H., 1986, Nonlinear least squares estimation of new product diffusion model, Marketing Science, 5(2), 169-178.
34. Speece, M.W. and Maclachlan, D.L., 1995, Application of a multi-generation diffusion model to milk container technology. Technological Forecasting and Social Change, 49(3), 281-295.
35. Teo, T. and Tan, M., 1998, An empirical study of adopters and non-adopters of the internet in Singapore, Information and Management, 34(6), 339-345
36. Tishler, A., Ventura, R. and Watters, M., 2001, Cellular telephones in the Israeli market:the demand, the choice of provider and potential revenues, Applied Economics, 33, 1479-1492
37. Train, K.E., Akiva, M.B. and Atherton, T., 1989, Consumption patterns and self-selecting tariffs, The Review of Economics and Statistics, 71(1), 62-73.
38. Tailor, B., 2008, research of innovative information application, FORRESTER http://www.forrester.com/rb/research.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top