(3.237.178.91) 您好!臺灣時間:2021/03/07 02:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃寶樺
研究生(外文):Pao-Hua Huang
論文名稱:應用負介電泳效應於微型電極進行單細胞捕捉之研究
論文名稱(外文):Single-cell Trapping Utilizing Negative Dielectrophoretic Quadrupole and Microwell Electrodes
指導教授:張凌昇
指導教授(外文):Ling-Sheng Jang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:53
中文關鍵詞:細胞操控電熱流負介電泳單細胞捕捉
外文關鍵詞:electrothermal flowcell manipulationnegative dielectrophoresis (nDEP)single cell trap
相關次數:
  • 被引用被引用:1
  • 點閱點閱:183
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
在過去十年中,有越來越多的研究致力於單一細胞操作上。單一細胞的操控是許多生物工程上的核心技術,像是基因工程、藥物注射以及現在相當熱門的生物複製技術等等。為了能夠達到微米甚至奈米級研究,MEMS因此應運而生,且MEMS技術比傳統檢測裝置更有效率。介電泳是電性操作方法中的一種,而且能夠與細胞捕捉後的檢測、分析等技術作結合。其中,負介電泳最適合用在存放於培養液介質中細胞的操作。
本論文設計了一由四極電極與微型捕捉電極結合在一起的生物晶片。四極電極可用來將細胞聚集於中間,再由微型捕捉電極去作抓取。如此一來,我們將可有效地利用有限的檢體來源來作之後的分析。本研究展現了單一細胞捕捉的過程,而在實驗過程中,我們也發現伴隨產生的回流可以用來對細胞作方向控制以達到更高的捕捉效率。最後,針對介電泳力與流體拖曳力也做了比較與分析,且實驗中所觀察到的現象和實驗結果也與所作的模擬分析相當符合。
The handling of individual cells, which has attracted increasing attention, is a key technique in cell engineering such as gene introduction, drug injection, and cloning technology. MEMS (Micro-Electro-Mechanical Systems) technology is established and is more efficient rather than the conventional ones. DEP (dielectrophoresis) is one of the electrical methods to manipulate μ-particles, and can be easily combined with subsequent analyses based on electric fields. Besides, negative DEP is practicable in trapping living cells suspended in physiological media.
In this research, two kinds of microelectrodes are combined to achieve single particle manipulation and trapping. One is the outer quadrupole geometry, which aggregates particles to the center region for being captured. The other one is the inner negative dielectrophoresis (nDEP) microwell (at the center of the quadrupole), which primarily traps the particles nearby. The collecting ability of such geometry is adopted to increase the trapped possibility of the nDEP microwell, and therefore launching an excess of particles is needless. In this way, we can sufficiently use the bio-particles in the droplet under the condition of limited sample source. Single-size latex beads and single cells are successfully held and proved here. Additionally, circulating flows are observed during the experiments, and we found that convective flows can be utilized well to make more accurate manipulation on particles in two dimensions. The drag force caused by fluid flows exerted on particles is also compared with the nDEP force. We demonstrate this trapping mechanism in capture and manipulation on single particles, and the experiment results are in good agreement with the numerical simulation solutions.
中文摘要 I
ABSTRACT II
ACKNOWLEDGEMENT III
CONTENT IV
CHAPTER 1 INTRODUCTION 1
1.1 Background and Motivation 1
1.2 Introduction to Cell Capture 2
1.3 Dielectrophoresis 3
1.4 Dielectrophoretic Trapping Mchanism 4
1.5 Organization of the Dissertation 6
CHAPTER 2 THEORY AND SIMULATION 7
2.1 Dielectrophoretic Force Theory 7
2.1.1 Neutral Particles under the cDEP Effect 7
2.1.2 Positive and Negative DEP Forces 10
2.1.3 Different Kinds of Dielectrophoretic Force 14
2.2 Simulation 16
2.4.1 Simulation Setup 17
2.4.2 Four-phase Quadrupole Electrodes 17
2.4.3 Microwell Electrodes 19
CHAPTER 3 CHIP FABRICATION AND EXPERIMENTAL SETUP 21
3.1 Chip Fabrication 21
3.1.1 Mask Design 21
3.1.2 MEMS Process 22
3.1.3 Fabrication of Glass Patterns 23
3.2 Experimental Setup 24
3.2.1 Sample and Chip Preparation 24
3.2.2 Particle Manipulation 25
3.2.3 Observation and Analysis 25
CHAPTER 4 RESULTS AND DISCUSSION 27
4.1 Accumulation of Particles under nDEP Effect 27
4.2 Single-bead Holding 28
4.3 AC Electrokinetics of Particle Manipulation 30
4.3.1 AC Electrokinetics of Fluid Flows 31
4.3.2 Electrothermal Effects of the Drag Force 32
4.3.3 Simulation of Particles Manipulation 33
4.3.4 Manipulation of Latex Beads and HeLa Cells 37
4.3.5 Experimental Observation of Particles’ Velocities 43
4.4 Other effects affecting Trapping 46
CHAPTER 5 CONCLUSIONS AND FUTURE WORK 48
REFERENCES 50
[1]S. Yang and J. Cao, "Two-Event Echos in Single-Molecule Kinetics: A Signature of Conformational Fluctuations," Journal of Chemical Physics, vol. 105, pp. 6536-6549, 2001.
[2]G. K. Schenter, H. P. Lu, and X. S. Xie, "Statistical Analyses and Theoretical Models of Single-Molecule Enzymatic Dynamics," Journal of Chemical Physics, vol. 103, pp. 10477-10488, 1999.
[3]P. Fortina, S. Surrey, and Lj. Kricka, “Molecular diagnostics: Hurdles for clinical implementation,” Trends in Molecular Medicine, vol. 8, pp. 264-266, 2002.
[4]P. M. Goodwin, R. L. Affleck, W. P. Ambrose, J. N. Demas, J. H. Jett, J. C. Martin, L. J. Reha-Krantz, D. J. Semin, J. A. Schecker, M. Wu, and R. A. Keller, "Progress toward DNA sequencing at the single molecule level," Experimental Biomolecular Physics, vol. 41, pp. 279-294, 1995.
[5]James MUYS, M. M. ALKAISI, J. J. EVANS1 and J. NAGASE, “Biochip- Cellular analysis by atomic force microscopy using dielectrophoretic manipulation,” Japanese Journal of Applied Physics, vol. 44, No. 7B, pp. 5717-5723, 2005.
[6]R.M. Hochmuth, “Micropipette aspiration of living cells,” Journal of Biomechanics, vol. 33, pp.15-22, 2000.
[7]A. Revzin, R. G. Tompkins and M. Toner, Langmuir, “Development of a microfabricated cytometry platform for characterization and sorting of individual leukocytes,” Journal of Lab on a Chip, vol. 5, pp. 30-37, 2005.
[8]D. Di Carlo, N. Aghdam and L. P. Lee, “Microfluidic self-assembly of tumor spheroids for anticancer drug discovery,” Biomedical Microdevices, vol. 10, pp. 197-202, 2008.
[9]L. S. Jang, and M. H. Wang, “Microfluidic device for cell capture and impedance measurement,” Biomedical Microdevices, vol. 9, pp. 737-743, 2007.
[10]Curtis, Jennifer E., Koss, Brain A., Grier, and David G. "Dynamic holographic optical tweezers," Optics Communication, vol. 207, pp.169-175, 2002.
[11]A. Ashkin et al., “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature, vol. 348, pp. 346-348, 2000.
[12]Liz Y. Wu, Dino Di Carlo, and Luke P Lee, “Microfluidic self-assembly of tumor spheroids for anticancer drug discovery,” Biomedical Microdevices, vol. 10, pp. 197-202, 2008.
[13]B. Le Pioufle , P. Surbled, H. Nagai, Y. Murakami, K.S. Chun, E. Tamiya, and H. Fujita, “Living cells captured on a bio-microsystem devoted to DNA injection,” Materials Science and Engineering, vol. C 12, pp. 77-81, 2000.
[14]B. M. Taff and J. Voldman, “A scalable addressable positive-dielectrophoretic. cell-sorting array,” Analytical Chemistry, vol. 77, pp. 7976-7983, 2005.
[15]T. P. Hunt, and R. M. Westervelt, “Dielectrophoresis tweezers for single cell manipulation,” Biomed Microdevices, vol. 8, pp. 227-230, 2006.
[16]Junya Suehiro, Akio Ohtsubo, Tetsuji Hatano, and Masanori Hara, “Selective detection of bacteria by a dielectrophoretic impedance measurement method using an antibody-immobilized electrode chip,” Sensors and Actuators B, vol. 119, pp. 319-326, 2006.
[17]Ramos, A., Morgan, H., Green, N.G., and Castellanos, A., “AC electrokinetics: a review of forces in microelectrode structures,” Journal of Physics D: Applied Physics, vol. 31, pp. 2338-2353, 1998.
[18]Pohl, Herbert A., and Pollock, Kent, “Electrode geometries for various dielectrophoretic force laws,” Journal of Electrostatics, vol. 5, pp. 337-342, 1978.
[19]Bakewell DJG, Hughes MP, Milner JJ, and Morgan H, “Dielectrophoretic manipulation of avidin and DNA,” Proceedings 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1998
[20]Morgan H, Hughes MP, and Green NG “Separation of Sub-Micron Particles by Dielectrophoresis,” Biochip Journal, vol. 77, pp. 516-525, 1999.
[21]J. Yang, Y. Huang, X. B.Wang, F. F. Becker, and P. R. C. Gascoyne, “Differential analysis of human leukocytes by dielectrophoretic field-flow-fractionation,” Biophysical Journal, vol. 78, no. 5, pp. 2680-2689, 2000.
[22]T.B. Jones, “Electromechanics of Particles,” Cambridge University Press, 1995.
[23]Erwan Lennon1, Serge Ostrovidov1, Vincent Senez2 and Teruo Fujii1, “Dielectrophoresis, cell culture, and electrical impedance spectroscopy applied to adherent cells in a single biochip,” Proceedings of International Conference on Microtechrologies in Medicine and Biology, pp. 165-168, 2006.
[24]Charlotte C. Kwong, Nan Li, and Chih-Ming Ho, “Studies of deionization and impedance spectroscopy for blood analyzer,” Proceedings of SPIE - The International Society for Optical Engineering, pp. 60030N, 2005.
[25]Tjitske Heida, Wim L. C. Rutten, and Enrico Marani, “Dielectrophoretic trapping of dissociated fetal cortical rat neurons,” IEEE Transactions on biomedical engineering, vol. 48, no. 8, 2001.
[26]Zhe Yu, Guangxin Xiang, Liangbin Pan,Lihua Huang, Zhongyao Yu, Wanli Xing, and Jing Cheng, “Negative dielectrophoretic force assisted construction of ordered neuronal networks on cell positioning bioelectronic chips,” Biomedical Microdevices, pp. 311-324, 2004.
[27]Joel Voldman, Rebecca A. Braff, Mehmet Toner, Martha L. Gray, and Martin A. Schmidt, “Holding forces of single-particle dielectrophoretic traps,” Biophysical Journal, vol. 80, pp. 531-541, 2001.
[28]Schnelle, T., R. Hagedorn, G. Fuhr, S. Fiedler, and T. Muller, “3-Dimensional electric-field traps for manipulation of cells: calculation and experimental verification,” Biochimica et Biophysica Acta, vol. 1157, pp.127-140. 1993.
[29]Manaresi, N., A. Romani, G. Medoro, L. Altomare, A. Leonardi, M. Tartagni, and R. Guerrieri, “A CMOS chip for individual cell manipulation and detection,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 2297-2305, 2003.
[30]Tomoyuki Yasukawa, Masato Suzuki, Takashi Sekiya, Hitoshi Shiku, Tomokazu Matsue, “Flow sandwich-type immunoassay in microfluidic devices based on negative dielectrophoresis,” Biosensors and Bioelectronics, vol. 22, pp. 2730-2736, 2007.
[31]Voldman, J., M. Toner, M. L. Gray, and M. A. Schmidt, “Design and analysis of extruded quadrupolar dielectrophoretic traps,” Journal of Electrostatics, vol. 57, pp. 69-90, 2003.
[32]Adam Rosenthal, and Joel Voldman, “Dielectrophoretic traps for single-particle patterning,” Biophysical Journal, vol. 88, pp. 2193-2205, 2005.
[33]H. A. Pohl, “The motion and Precipitation of Suspensoids in Divergent Electric Fields,” Journal of Applied Physics, vol. 22, pp.869-871, 1951.
[34]G. Fuhr, T. M�刜ler, T. Schnelle, R. Hagedorn, A. Voigt, S. Fiedler, W. M. Arnold, U. Zimmermann, B.Wagner, and A. Heuberger, “Radio-frequency microtools for particle and live cell manipulation,” Naturwissenschaften, vol. 81, pp. 528-535, 1994.
[35]G. H. Markx and R. Pethig, “Dielectrophoretic separation of cells: Continuous separation,” Biotechnology and Bioengineering, vol. 45, pp. 337-343, 1995.
[36]Wang X-B, Huang Y, Becker F F and Gascoyne P R C, “A unified theory of dielectrophoresis and travelling-wave dielectrophoresis,” Journal of Physics D: Applied Physics, vol. 27, pp. 1571-1574, 1994.
[37]H Morgan, N G Green, M P Hughes, W Monaghan and T C Tan, “Large-area travelling-wave dielectrophoresis particle separator,” Journal Micromech. Microeng, vol. 7, pp. 65-70, 1997.
[38]X B Wang, Y Huang, X Wang, F F Becker, and P R Gascoyne, “Dielectrophoretic manipulation of cells with spiral electrodes,” Journal of Electrostatics, pp. 277-295, 1997.
[39]Dalton, A.D. Goater, J. Drysdale, and R. Pethig,” Physicochemical and Engineering Aspects,” Colloids and Surfaces A, vol. 195, pp. 263-268, 2001.
[40]Chengjun Huang, Ailiang Chen, Lei Wang, Min Guo, and Jun Yu, “Electrokinetic measurements of dielectric properties of membrane for apoptotic HL-60 cells on chip-based device,” Biomed Microdevices, vol. 9, pp. 335-343, 2007.
[41]Pecorelli, S., Favalli, G., Zigliani, L., Odicino, and F., “Cancer in women,” International Journal of Gynecology & Obstetrics, vol. 82(3), pp. 369-379, 2003.
[42]Sharrer, T., “HeLa" Herself,” The Scientist, vol. 20(7), pp. 22, 2006.
[43]Velev, O. D. Bhatt, and K. H., ”On-chip micromanipulation and assembly of colloidal particles by electric fields,” Journal of Soft Matter, vol. 2, pp. 738-750, 2006.
[44]Green, N.G., Ramos, A., Gonzalez, A., Morgan, H., and Castellanos, A., “Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements,” Physical Review E, vol. 61, pp. 4011-4018, 2000.
[45]Morgan H., and Green N. G., “AC electrokinetics: volloids and nanoparticles” Research Studies Press Ltd, 2003.
[46]Green, N.G., Ramos, A., Gonzalez, A., Castellanos, A., and Morgan, H., “Electrothermally induced fluid flow on microelectrodes,” Journal of Electrostatics, vol. 53, pp. 71-87, 2001.
[47]Gonzalez, A., Ramos, A., Morgan, H., Green, N., and Castellanos, A., “Electrothermal flows generated by alternating and rotating electric fields in Microsystems,” Journal of Fluid Mechanics, vol. 564, pp. 415-433, 2006.
[48]A. Castellanos, A. Ramos, A. Gonzalez, N. G. Green and H. Morgan, “Electrohydrodynamics and dielectophoresis in microsystems: saling laws,” Journal of Physics D: Applied Physics, vol. 36, pp. 2584-2579, 2003.
[49]Ramos A, Morgan H, Green N, and Castellanos A, “AC electrokinetics: a review of forces in microelectrode structures,” Journal of Physics D: Applied Physics, vol.31, pp. 2338-2353, 1998.
[50] Dazhi Wang, Marin Sigurdson, and Carl D. Meinhart, “Experimental analysis of particle and fluid motion in ac electrokinetics,” Experiments in Fluids, vol. 38, pp. 1-10, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔