(3.238.186.43) 您好!臺灣時間:2021/02/28 21:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳智揚
研究生(外文):Chih-Yang Chen
論文名稱:非完整約束與完整約束輪型機器人之適應性模糊滑動控制器之研究
論文名稱(外文):A Study on Adaptive Fuzzy Sliding-Mode Controller for Nonholonomic and Holonomic Wheeled Mobile Robots
指導教授:李祖聖
指導教授(外文):Tzuu-Hseng S. Li
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:122
中文關鍵詞:適應性模糊滑動控制李亞普諾夫穩定性理論完整約束輪型機器人非完整約束輪型機器人
外文關鍵詞:Nonholonomic Wheeled Mobile RobotLyapunov stability theoryHolonomic Wheeled Mobile RobotAdaptive Fuzzy Sliding-Mode Control
相關次數:
  • 被引用被引用:1
  • 點閱點閱:421
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:66
  • 收藏至我的研究室書目清單書目收藏:0
本論文係針對軌跡追循議題各別探討兩種輪型機器人與其相對應的控制器之設計。首先,分別對於非完整約束與完整約束輪型機器人提出其相對應的運動模型;其中,前者的運動模型由反推控制法推導獲得,其控制器參數再由演化規劃程式加以訓練,而後者的運動模型則使用模糊邏輯控制器實現之。依據機器人運動上的限制,非完整約束輪型機器人的動態模組由拉格朗治公式加以求得。另一方面,由於完整約束輪型機器人全方位的運動特性,其動態模組則可由牛頓第二運動定律推導得之。同時,由於適應性模糊滑動控制器具備成功抑制滑動控制器之彈跳現象並有效抵抗雜訊與參數擾動之能力,因此採用它來確保兩種輪型機器人的軌跡追循能力。此外藉由李亞普諾夫穩定性理論,本論文進一步驗證了所提出方法的穩定性。在實際非完整約束輪型機器人的實驗中,證實了以所提方法控制該機器人進行軌跡追循的可行性。最後,相關的電腦模擬結果,均驗證所提出的適應性模糊滑動控制器,可有效地控制兩種輪型機器人完成軌跡追循之任務。
This dissertation presents two types of wheeled mobile robots (WMR) coupled with the controller design for trajectory tracking issue. First, we introduce both the kinematic models of the nonholonomic and holonomic WMRs; the kinematic controller for the former whose control gains are trained by evolutionary programming is derived by using the backstepping method, and the fuzzy logic controller is adopted as kinematic controller for the latter, the holonomic WMR. According to the motion constraint, the dynamic model for the nonholonomic WMR is developed by the Lagrange formula. The dynamic model of the holonomic WMR is then obtained from the Newton’s Second Law of Motion since the motion of this kind of robot is omni-directional. Next, the trajectory tracking abilities of both kinds of WMRs are ensured by utilizing the adaptive fuzzy sliding-mode controllers, which not only eliminate the chattering phenomenon in the sliding-mode control, but also cope with the system uncertainties and external disturbances. Additionally, the stabilities of the proposed methods are guaranteed by adopting the Lyapunov stability theory. The experimental results are done in the test field to demonstrate the feasibility of real nonholonomic WMR maneuvers. Finally, computer simulations on the tracking issues of these two WMRs successfully validate the effectiveness of the proposed adaptive fuzzy sliding-mode dynamic controllers.
Contents
Abstract (Chinese) I
Abstract (English) II
Acknowledgement (Chinese) III
Contents IV
List of Acronyms VII
Nomenclature VIII
List of Figures XIV
List of Tables XXII
Chapter 1 Introduction 1
1.1 Preliminary 1
1.2 Dissertation Contributions 6
1.3 Dissertation Organization 7

Chapter 2 Kinematic Controller Design for Nonholonomic and Holonomic WMRs 8
2.1 Introduction 8
2.2 Nonholonomic WMRs 9
2.2.1 Kinematic Model and Kinematic Controller Design 9
2.2.2 EP-based Kinematic Controller Design 13
2.2.3 Stability Verification 17
2.2.4 Simulation Results 18
2.3 Holonomic WMRs 20
2.3.1 Kinematic Model 20
2.3.2 Kinematic Controller Design 21
2.3.3 Simulation Results 24
2.4 Summary 26

Chapter 3 Dynamic Controller Design for Nonholonomic and
Holonomic WMRs 28
3.1 Introduction 28
3.2 Dynamic Model and Controller Design for Nonholonomic WMRs 29
3.2.1 Dynamic Model of Nonholonomic WMRs 29
3.2.2 Design of Sliding-Mode Dynamic Controller for Nonholonomic WMRs 30
3.3 Dynamic Model and Controller Design for Holonomic WMRs 33
3.3.1 Dynamic Model of Holonomic WMRs 33
3.3.2 Actuator Dynamic 36
3.3.3 Design of Sliding-Mode Dynamic Controller for Holonomic WMRs 39
3.4 Simulation Results 42
3.4.1 Round Rectangle Trajectory-Tracking for Nonholonomic WMRs 43
3.4.2 Round Rectangle Trajectory-Tracking for Holonomic WMRs 47
3.5 Summary 50
Chapter 4 Fuzzy Sliding-Mode Control Design 51
4.1 Introduction 51
4.2 The Fuzzy Sliding-Mode Control 52
4.2.1 Architecture of FLC 52
4.2.2 Fuzzy Sliding-Mode Control 54
4.3 Design of Fuzzy Sliding-Mode Controller for Nonholonomic WMRs 56
4.4 Design of Fuzzy Sliding-Mode Controller for Holonomic WMRs 59
4.5 Simulation Results 61
4.5.1 S-Typed Trajectory-Tracking for Nonholonomic WMRs 62
4.5.2 S-Typed Trajectory-Tracking for Holonomic WMRs 67
4.6 Summary 72
Chapter 5 Adaptive Control Design 73
5.1. Introduction 73
5.2 Adaptive Sliding-Mode Controller Design for Nonholonomic WMRs 74
5.2.1 The Adaptive Sliding-Mode Controller 74
5.2.2 Stability Verification of the Adaptive Sliding-Mode Controller 75
5.2.3 Experimental Results 78
5.3 Adaptive Fuzzy Sliding-Mode Controller Design for Nonholonomic WMRs 82
5.3.1 The Adaptive Fuzzy Sliding-Mode Controller 82
5.3.2 Stability Verification of the Adaptive Fuzzy Sliding-Mode Controller 83
5.3.3 Experimental Results 86
5.4 Adaptive Fuzzy Sliding-Mode Controller Design for Holonomic WMRs 88
5.4.1 The Adaptive Fuzzy Sliding-Mode Controller 88
5.4.2 EP-based Adaptive Fuzzy Sliding-Mode Controller Design 89
5.4.3 Stability Verification of the Adaptive Fuzzy Sliding-Mode Controller 91
5.5 Simulation Results 94
5.5.1 Circular Trajectory-Tracking (Constant Acceleration) 94
5.5.2 S-Typed Trajectory-Tracking (Variable Acceleration) 102
5.6 Summary 106
Chapter 6 Conclusions 107
6.1 Conclusions 107
6.2 Recommendations for Further Work 109
Bibliography 110
[1]C. Ario and A. Sala, “Extensions to “Stability analysis of fuzzy control systems subject to uncertain grades of membership”,” IEEE Transactions on Systems, Man, and Cybernetics, part-B, vol. 38, no. 2, pp. 558-563, 2008.
[2]R. K. Barai and K. Nonami, “Optimal two-degree-of-freedom fuzzy control for locomotion control of a hydraulically actuated hexapod robot,” Information Sciences, vol. 177, pp. 1892-1915, 2007.
[3]A. Bobtsov, N. Nikolaev, and O. Slita, “Adaptive control of libration angle of a satellite,” Mechatronics, vol. 17, pp. 271-276, 2007.
[4]Y. J. Cao, “Eigenvalue optimisation problems via evolutionary programming,” Electronics Letters, vol. 33, pp. 642-643, 1997.
[5]R. Carelli, J. Santos-Victor, F. Roberti, and S. Tosetti, “Direct visual tracking control of remote cellular robots,” Robotics and Autonomous Systems, vol. 54, pp. 805-814, 2006.
[6]P. Chen, S. Mitsutake, T. Isoda, and T. Shi, “Omni-directional robot and adaptive control method for off-road running,” IEEE Transactions on Robotics and Automation, vol. 18, no. 2, pp. 251-256, Apr. 2002.
[7]D. Chwa, “Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates,” IEEE Transactions on Control Systems Technology, vol. 12, pp. 637-644, 2004.
[8]M. L. Corradini and G. Orlando “Control of mobile robots with uncertainties in the dynamic model: A discrete time sliding mode approach with experimental results,” Control Engineering Practice, vol.10, pp. 23-34, 2002.
[9]T. Das, I. N. Kar and S. Chaudhury, “Simple neuron-based adaptive controller for a nonholonomic mobile robot including actuator dynamics,” Neurocomputing, vol. 69, pp. 2140-2151, 2006.
[10]T. Das and I. N. Kar, “Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots,” IEEE Transactions on Control Systems Technology, vol. 14, pp. 501-510, 2006.
[11]W. E. Dixon, D. M. Dawson, E. Zergeroglu, and A. Behal, “Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system,” IEEE Transactions on Systems, Man, and Cybernetics, part-B, vol. 31, no. 3, pp. 341-352, June 2001.
[12]W. E. Dixon, D. M. Dawson, and E. Zergeroglu, “Robust control of a mobile robot system with kinematic disturbances,” in Proceedings of IEEE International Conference on Control Applications, 2000, pp. 437-442.
[13]K. D. Do, Z. P. Jiang, and J. Pan, “Simultaneous tracking and stabilization of mobile robots: An adaptive approach,” IEEE Transactions on Automatic Control, vol. 49, pp. 1147-1152, 2004.
[14]K. D. Do and J. Pan, “Global output-feedback path tracking of unicycle-type mobile robots,” Robotics Computer-Integrated Manufacturing, vol. 22, pp. 166-179, 2006.
[15]W. Dong, W. Huo, S. K. Tso and W. L. Xu, “Tracking control of uncertain dynamic nonholonomic system and its application to wheeled mobile robots,” IEEE Transactions on Robotics and Automation, vol. 16, pp. 870-874, 2000.
[16]J. Dong and G. H. Yang, “State feedback control of continuous-time T-S fuzzy systems via switched fuzzy controllers,” Information Sciences, vol. 178, pp. 1680-1695, 2008.
[17]R. Fierro and F. L. Lewis, “Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics,” Journal of Robotic System, vol.14, no.3, pp. 149-163, 1997.
[18]R. Fierro and F. L. Lewis, “Control of a nonholonomic mobile robot using neural networks,” IEEE Transactions on Neural Networks, vol.9, pp. 589-600, July 1998.
[19]J. Figueroa, J. Posada, J. Soriano, M. Melgarejo, and S. Rojas, “A type-2 fuzzy controller for tracking mobile objects in the context of robotic soccer games,” in Proceedings of IEEE FUZZ Conference, Reno, NV, 2005, pp. 359-364.
[20]E. Freire, T. Bastos-Filho, M. Sarcinelli-Filho, and R. Carelli, “A new mobile robot control approach via fusion of control signals,” IEEE Transactions on Systems, Man, and Cybernetics, part-B, vol. 34, no. 1, pp. 419-429, Feb. 2004.
[21]L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence through Simulated Evolution. John Wiley, Chichester, UK, 1966.
[22]R. F. Fung, K. W. Chen, and J. Y. Yen, “Fuzzy sliding mode controlled slide-crank mechanism using a PM synchronous servo motor drive,” International Journal of Mechanical Science, vol. 41, pp. 337-355, 1999.
[23]V. Giordano, D. Naso, and B. Turchiano, “Combining genetic algorithms and Lyapunov-based adaptation for online design of fuzzy controllers,” IEEE Transactions on Systems, Man, and Cybernetics, part-B, vol. 36, no. 5, pp. 1118-1127, Oct. 2006.
[24]Q. P. Ha, Q. H. Nguyen, D. C. Rye, and H. F. Durrant-Whyte, “Fuzzy sliding-mode controllers with applications,” IEEE Transactions on Industrial Electronics, vol. 48, no. 1, pp. 38-46, Feb. 2001.
[25]T. Hamel and D. Meizel, “On robustness and precision of mobile robots missions,” Automatica, vol. 37, pp. 437-444, 2001.
[26]M. A. Horacio and G. G. Simon, “Mobile robot path planning and tracking using simulated annealing and fuzzy logic control,” Expert Systems with Applications, vol. 15, pp. 421-429, 1998.
[27] M. Y. Hsiao, T.-H. S. Li, J. Z. Lee, C.H. Chao, and S. H. Tsai, “Design of interval type-2 fuzzy sliding-mode controller,” Information Sciences, vol. 178, pp. 1696-1716, 2008.
[28]Z. Hu, Z. Li, R. Bicker, and C. Marshall, “Robust output tracking control of nonholonomic mobile robots via higher order sliding mode,” Nonlinear Studies, vol.11, no.1, pp. 23-35, 2004.
[29]C. Hua, F. Li, and X. Guan, “Observer-based adaptive control for uncertain time-delay systems,” Information Sciences, vol. 176, pp. 201-214, 2006.
[30]H. C. Huang and C. C. Tsai, “Adaptive robust control of an omnidirectional mobile platform for autonomous service robots in polar coordinates,” Robotics and Autonomous Systems, vol. 57, no. 4, pp. 439-460, Apr. 2008.
[31]M. Ji, Z. Zhang, G. Biswas, and N. Sarkar, “Hybrid fault adaptive control of a wheeled mobile robot,” IEEE/ASME Transactions on Mechatronics, vol. 8, pp. 226-233, 2003.
[32]Z. P. Jiang and H. Nijmeijev, “Tracking control of mobile robots: A case study in backstepping,” Automatica, vol.33, no.7, pp. 1393-1399, 1997.
[33]Z. P. Jiang and H. Nijmeijev, “A recursive technique for tracking control of nonholonomic system in chained form,” IEEE Transactions on Automatic Control, vol.44, no.2, pp. 265-279, 1999.
[34]Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable tracking control method for an autonomous mobile robot,” in Proceedings of IEEE International Conference on Robotics and Automation, pp. 384-389, Cincinnati, OH, 1990.
[35]E. F. Kececi and T. Gang. “Adaptive vehicle skid control,” Mechatronics, vol. 16, pp. 291-301, 2006.
[36]Y. J. Kim, J. H. Kim, and D. S. Kwon, “Evolutionary programming-based univector field navigation method for past mobile robots,” IEEE Transactions on Systems, Man, and Cybernetics, part-B, vol. 31, no. 3, pp. 450-458, Jun. 2001.
[37]D. H. Kim and T. H. Oh, “Tracking control of a two-wheeled mobile robot using input-output linearization,” Control Engineer Practice, vol.7, pp. 369-373, 1999.
[38]D. Kim and J. Park, “Application of adaptive control to the fluctuation of engine speed at idle,” Information Sciences, vol. 177, pp. 3341-3355, 2007.
[39]M. S. Kim, J. H. Shin, S. G. Hong, and J. J. Lee, “Designing a robust adaptive dynamic controller for nonholonomic mobile robots under modeling uncertainty and disturbances,” Mechatronics, vol. 13 pp. 507-519, 2003.
[40]T. Kukao, H. Nakagawa, and N. Adachi, “Adaptive tracking control of nonholonomic mobile robot,” IEEE Transactions on Robotics and Automation, vol.16, pp. 609-615, Oct. 2000.
[41]J. P. Laumond, P. E. Jacobs, M. Taix, and R. M. Murray, “A motion planner for nonholonomic mobile robots,” IEEE Transactions on Robotics and Automation, vol. 10, no. 5, pp. 577-593, Oct. 1994.
[42]K. S. Leung, M. L. Wong, W. Lam, Z. Wang, and K. Xu, “Learning nonlinear multiregression networks based on evolutionary computation,” IEEE Transactions on Systems, Man, and Cybernetics, part-B, vol. 32, no. 5, pp. 630-644, Oct. 2002.
[43]T.-H. S. Li, C. Y. Chen, et al., “An autonomous surveillance and security robot team,” IEEE Workshop on Advanced Robotics and Its Social Impacts, 2007, pp. 1-6.
[44]T.-H. S. Li, C. L. Kuo, and N. R. Guo, “Design of an EP-based fuzzy sliding-mode control for a magnetic ball suspension system,” Chaos, Solitons & Fractals, vol. 33, no. 5, pp. 1523-1531, Aug. 2007.
[45]T. M. Lim and D. Zhang, “Control of Lorentz force-type self-bearing motors with hybrid PID and robust model reference adaptive control scheme,” Mechatronics, vol. 18, pp. 35-45, 2008.
[46]C. K. Lin, “Robust adaptive critic control of nonlinear systems using fuzzy basis function networks: An LMI approach,” Information Sciences, vol. 177, pp. 4934-4946, 2007.
[47]W. S. Lin, C. L. Huang, and M. K. Chuang, “Hierarchical fuzzy control for autonomous navigation of wheeled robots,” IEE Proceeding Control Theory and Applications, vol. 152, pp. 598-606, Sept. 2005.
[48]Y. J. Liu and W. Wang, “Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems,” Information Sciences, vol. 177, pp. 3901-3917, 2007.
[49]A. M. B. Loach and S. Drakunov, “Stabilization and Tracking in the nonholonomic integrator via sliding modes,” System & Control Letters, vol.29, no.2, pp. 91-99, 1996.
[50]Z. Lu, L. S. Shieh, G. Chen, and N. P. Coleman, “Adaptive feedback linearization control of chaotic systems via recurrent high-order neural networks,” Information Sciences, vol. 176, pp. 2337-2354, 2006.
[51]P. Melin and O. Castillo, “A new method for adaptive control of non-linear plants using type-2 fuzzy logic and neural networks,” International Journal of General Systems, vol. 33, pp. 289-304, 2004.
[52]R. M. Murray and S. Sastry, “Nonholonomic motion planning: Steering using sinusoids,” IEEE Transactions on Automatic Control, vol.38, no.5, pp. 700-716, 1993.
[53]G. Oriolo, A. D. Luca, and M. Vendittelli, “WMR control via dynamic feedback linearization: design, implementation, and experimental validation,” IEEE Transactions on Control Systems Technology, vol. 10, pp. 835-852, 2002.
[54]P. R. Ouyang, W. J. Zhang, and M. M. Gupta, “An adaptive switching learning control method for trajectory tracking of robot manipulators,” Mechatronics, vol. 16, pp. 51-61, 2006.
[55]F. Pourboghrat and M. P. Karlsson, “Adaptive control of dynamic mobile robots with nonholonomic constraints,” Computers and Electrical Engineering, vol. 28, pp. 241-253, 2002.
[56]R. E. Precup and S. Preitl, “PI-Fuzzy controllers for integral plants to ensure robust stability,” Information Sciences, vol. 177, pp. 4410-4429, 2007.
[57]R. G. Reynolds and S. Zhu, “Knowledge-based function optimization using fuzzy cultural algorithms with evolutionary programming,” IEEE Transactions on Systems, Man, and Cybernetics, part-B, vol. 31, no. 1, pp. 1-18, Feb. 2001.
[58]S. K. Saha, J. Angeles, and J. Darcovich, “The design of kinematically isotropic rolling robots with omnidirectional wheels,” Mechanism and Machine Theory, vol. 30, no. 8, pp. 1127-1137, Nov. 1995.
[59]E. N. Sanchez, H. M. Becerra, and C. M. Velez, “Combining fuzzy, PID and regulation control for an autonomous mini-helicopter,” Information Sciences, vol. 177, pp. 1999-2022, 2007.
[60]R. Sepúlveda, O. Castillo, P. Melin, A. Rodríguez-Díaz, and O. Montiel, “Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic,” Information Sciences, vol. 177, pp. 2023-2048, 2007.
[61]J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991.
[62]S. Sun, “Designing approach on trajectory-tracking control of mobile robot,” Robotics and Computer-Integrated Manufacturing, vol. 21, pp. 81-85, 2005.
[63]K. N. Tamása, D. Raffaello, and G. Pritam, “Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle,” Robotics and Autonomous Systems, vol. 46, no. 1, pp. 47-64, Jan. 2004.
[64]C. S. Ting, “An observer-based approach to controlling time-delay chaotic systems via Takagi-Sugeno fuzzy model,” Information Sciences, vol. 177, pp. 4314-4328, 2007.
[65]A. V. Topalov, J. H. Kim, and T. P. Proychev, “Fuzzy-net control of non-holonomic mobile robot using evolutionary feedback-error-learning,” Robotics and Autonomous Systems, vol. 23, pp. 187-200, 1998.
[66]M. Wada, H. H. Asada, “A holonomic omnidirectional vehicle with a reconfigurable footprint mechanism and its application to wheelchairs,” in Proceedings of IEEE International Conference on Robotics and Automation, 1998, pp. 774-780.
[67]R. J. Wai, M. A. Kuo, and J. D. Lee, “Cascade direct adaptive fuzzy control design for a nonlinear two-axis inverted-pendulum servomechanism,” IEEE Transactions on Systems, Man, and Cybernetics, part-B, vol. 38, no. 2, pp. 439-454, April 2008.
[68]R. J. Wai, C. M. Lin, and C. F. Hsu, “Adaptive fuzzy sliding-mode control for electrical servo drive,” Fuzzy Sets and Systems, vol. 143, no. 2, pp. 295-310, 2004.
[69]R. J. Wai, Z. W. Yang, “Adaptive fuzzy neural network control design via a T–S fuzzy model for a robot manipulator including actuator dynamics,” IEEE Transactions on Systems, Man, and Cybernetics, part-B, vol. 38, no. 5, pp. 1326-1346, Oct. 2008.
[70]J. Wang, A. B. Rad, and P. T. Chan, “Indirect adaptive fuzzy sliding-mode control: Part I: Fuzzy switching,” Fuzzy Sets and System, vol. 122, pp. 21-30, 2001.
[71]K. Watanabe, Y. Shiraishi, S. G. Tzafestas, J. Tang, and T. Fukuda, “Feedback control of an omnidirectional autonomous platform for mobile service robots,” Robotics and Autonomous Systems, vol. 22, no. 3-4, pp. 315-330, July 1998.
[72]Z. Weng, G. Chen, L. S. Shieh, and J. Larsson, “Evolutionary programming Kalman filter,” Information Sciences, vol. 129, pp. 197-210, 2000.
[73]R. L. Williams, II, B. E. Carter, P. Gallina, and G. Rosati, “Dynamic model with slip for wheeled omnidirectional robots,” IEEE Transactions on Robotics and Automation, vol. 18, no. 3, pp. 285-293, 2002.
[74]C. C. Wit and O. J. Sordalen, “Exponential stabilization of mobile robots with nonholonomic constraints,” IEEE Transactions on Automatic Control, vol. 13, pp. 1791-1797, 1992.
[75]C. C. Wong, Y. H. Lin, S. A. Lee, and C. H. Tsai, “GA-based fuzzy system design in FPGA for an omni-directional mobile robot,” Journal of Intelligent and Robotic Systems, vol. 44, no. 4, pp. 327-347, Dec. 2005.
[76]H. N. Wu and H. X. Li, “Finite-dimensional constrained fuzzy control for a class of nonlinear distributed process systems,” IEEE Transactions on Sysems, Man, and Cybernetics, part-B, vol. 37, no. 5, pp. 1422-1430, Oct. 2007.
[77]J. Wu, D. Pu, and H. Ding, “Adaptive robust motion control of SISO nonlinear systems with implementation on linear motors,” Mechatronics, vol. 17, pp. 263-270, 2007.
[78]J. M. Yang and J. H. Kim, “Sliding mode control for trajectory of nonholonomic wheeled mobile robots,” IEEE Transactions on Robotics and Automaion, vol.15, no.3, pp. 578-587, 1999.
[79]S. J. Yoo, J. B. Park and Y. H.Choi, “Indirect adaptive control of nonlinear dynamic systems using self recurrent wavelet neural networks via adaptive learning rates,” Information Sciences, vol. 177, pp. 3074-3098, 2007.
[80]C. Valdivieso and A. Cipriano, “Fault detection and isolation system design for omnidirectional soccer-playing robots,” IEEE International Symposium on Computer-Aided Control Systems Design, 2006, pp. 2641-2646.
[81]L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338-353, 1965.
[82]L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning - I,” Information Sciences, vol. 8, pp. 199-249, 1975.
[83]L. A. Zadeh, “Toward a generalized theory of uncertainty (GTU) - an outline,” Information Sciences, vol. 172, pp. 1-40, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔