|
[1]C. Ario and A. Sala, “Extensions to “Stability analysis of fuzzy control systems subject to uncertain grades of membership”,” IEEE Transactions on Systems, Man, and Cybernetics, part-B, vol. 38, no. 2, pp. 558-563, 2008. [2]R. K. Barai and K. Nonami, “Optimal two-degree-of-freedom fuzzy control for locomotion control of a hydraulically actuated hexapod robot,” Information Sciences, vol. 177, pp. 1892-1915, 2007. [3]A. Bobtsov, N. Nikolaev, and O. Slita, “Adaptive control of libration angle of a satellite,” Mechatronics, vol. 17, pp. 271-276, 2007. [4]Y. J. Cao, “Eigenvalue optimisation problems via evolutionary programming,” Electronics Letters, vol. 33, pp. 642-643, 1997. [5]R. Carelli, J. Santos-Victor, F. Roberti, and S. Tosetti, “Direct visual tracking control of remote cellular robots,” Robotics and Autonomous Systems, vol. 54, pp. 805-814, 2006. [6]P. Chen, S. Mitsutake, T. Isoda, and T. Shi, “Omni-directional robot and adaptive control method for off-road running,” IEEE Transactions on Robotics and Automation, vol. 18, no. 2, pp. 251-256, Apr. 2002. [7]D. Chwa, “Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates,” IEEE Transactions on Control Systems Technology, vol. 12, pp. 637-644, 2004. [8]M. L. Corradini and G. Orlando “Control of mobile robots with uncertainties in the dynamic model: A discrete time sliding mode approach with experimental results,” Control Engineering Practice, vol.10, pp. 23-34, 2002. [9]T. Das, I. N. Kar and S. Chaudhury, “Simple neuron-based adaptive controller for a nonholonomic mobile robot including actuator dynamics,” Neurocomputing, vol. 69, pp. 2140-2151, 2006. [10]T. Das and I. N. Kar, “Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots,” IEEE Transactions on Control Systems Technology, vol. 14, pp. 501-510, 2006. [11]W. E. Dixon, D. M. Dawson, E. Zergeroglu, and A. Behal, “Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system,” IEEE Transactions on Systems, Man, and Cybernetics, part-B, vol. 31, no. 3, pp. 341-352, June 2001. [12]W. E. Dixon, D. M. Dawson, and E. Zergeroglu, “Robust control of a mobile robot system with kinematic disturbances,” in Proceedings of IEEE International Conference on Control Applications, 2000, pp. 437-442. [13]K. D. Do, Z. P. Jiang, and J. Pan, “Simultaneous tracking and stabilization of mobile robots: An adaptive approach,” IEEE Transactions on Automatic Control, vol. 49, pp. 1147-1152, 2004. [14]K. D. Do and J. Pan, “Global output-feedback path tracking of unicycle-type mobile robots,” Robotics Computer-Integrated Manufacturing, vol. 22, pp. 166-179, 2006. [15]W. Dong, W. Huo, S. K. Tso and W. L. Xu, “Tracking control of uncertain dynamic nonholonomic system and its application to wheeled mobile robots,” IEEE Transactions on Robotics and Automation, vol. 16, pp. 870-874, 2000. [16]J. Dong and G. H. Yang, “State feedback control of continuous-time T-S fuzzy systems via switched fuzzy controllers,” Information Sciences, vol. 178, pp. 1680-1695, 2008. [17]R. Fierro and F. L. Lewis, “Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics,” Journal of Robotic System, vol.14, no.3, pp. 149-163, 1997. [18]R. Fierro and F. L. Lewis, “Control of a nonholonomic mobile robot using neural networks,” IEEE Transactions on Neural Networks, vol.9, pp. 589-600, July 1998. [19]J. Figueroa, J. Posada, J. Soriano, M. Melgarejo, and S. Rojas, “A type-2 fuzzy controller for tracking mobile objects in the context of robotic soccer games,” in Proceedings of IEEE FUZZ Conference, Reno, NV, 2005, pp. 359-364. [20]E. Freire, T. Bastos-Filho, M. Sarcinelli-Filho, and R. Carelli, “A new mobile robot control approach via fusion of control signals,” IEEE Transactions on Systems, Man, and Cybernetics, part-B, vol. 34, no. 1, pp. 419-429, Feb. 2004. [21]L. J. Fogel, A. J. Owens, and M. J. Walsh, Artificial Intelligence through Simulated Evolution. John Wiley, Chichester, UK, 1966. [22]R. F. Fung, K. W. Chen, and J. Y. Yen, “Fuzzy sliding mode controlled slide-crank mechanism using a PM synchronous servo motor drive,” International Journal of Mechanical Science, vol. 41, pp. 337-355, 1999. [23]V. Giordano, D. Naso, and B. Turchiano, “Combining genetic algorithms and Lyapunov-based adaptation for online design of fuzzy controllers,” IEEE Transactions on Systems, Man, and Cybernetics, part-B, vol. 36, no. 5, pp. 1118-1127, Oct. 2006. [24]Q. P. Ha, Q. H. Nguyen, D. C. Rye, and H. F. Durrant-Whyte, “Fuzzy sliding-mode controllers with applications,” IEEE Transactions on Industrial Electronics, vol. 48, no. 1, pp. 38-46, Feb. 2001. [25]T. Hamel and D. Meizel, “On robustness and precision of mobile robots missions,” Automatica, vol. 37, pp. 437-444, 2001. [26]M. A. Horacio and G. G. Simon, “Mobile robot path planning and tracking using simulated annealing and fuzzy logic control,” Expert Systems with Applications, vol. 15, pp. 421-429, 1998. [27] M. Y. Hsiao, T.-H. S. Li, J. Z. Lee, C.H. Chao, and S. H. Tsai, “Design of interval type-2 fuzzy sliding-mode controller,” Information Sciences, vol. 178, pp. 1696-1716, 2008. [28]Z. Hu, Z. Li, R. Bicker, and C. Marshall, “Robust output tracking control of nonholonomic mobile robots via higher order sliding mode,” Nonlinear Studies, vol.11, no.1, pp. 23-35, 2004. [29]C. Hua, F. Li, and X. Guan, “Observer-based adaptive control for uncertain time-delay systems,” Information Sciences, vol. 176, pp. 201-214, 2006. [30]H. C. Huang and C. C. Tsai, “Adaptive robust control of an omnidirectional mobile platform for autonomous service robots in polar coordinates,” Robotics and Autonomous Systems, vol. 57, no. 4, pp. 439-460, Apr. 2008. [31]M. Ji, Z. Zhang, G. Biswas, and N. Sarkar, “Hybrid fault adaptive control of a wheeled mobile robot,” IEEE/ASME Transactions on Mechatronics, vol. 8, pp. 226-233, 2003. [32]Z. P. Jiang and H. Nijmeijev, “Tracking control of mobile robots: A case study in backstepping,” Automatica, vol.33, no.7, pp. 1393-1399, 1997. [33]Z. P. Jiang and H. Nijmeijev, “A recursive technique for tracking control of nonholonomic system in chained form,” IEEE Transactions on Automatic Control, vol.44, no.2, pp. 265-279, 1999. [34]Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable tracking control method for an autonomous mobile robot,” in Proceedings of IEEE International Conference on Robotics and Automation, pp. 384-389, Cincinnati, OH, 1990. [35]E. F. Kececi and T. Gang. “Adaptive vehicle skid control,” Mechatronics, vol. 16, pp. 291-301, 2006. [36]Y. J. Kim, J. H. Kim, and D. S. Kwon, “Evolutionary programming-based univector field navigation method for past mobile robots,” IEEE Transactions on Systems, Man, and Cybernetics, part-B, vol. 31, no. 3, pp. 450-458, Jun. 2001. [37]D. H. Kim and T. H. Oh, “Tracking control of a two-wheeled mobile robot using input-output linearization,” Control Engineer Practice, vol.7, pp. 369-373, 1999. [38]D. Kim and J. Park, “Application of adaptive control to the fluctuation of engine speed at idle,” Information Sciences, vol. 177, pp. 3341-3355, 2007. [39]M. S. Kim, J. H. Shin, S. G. Hong, and J. J. Lee, “Designing a robust adaptive dynamic controller for nonholonomic mobile robots under modeling uncertainty and disturbances,” Mechatronics, vol. 13 pp. 507-519, 2003. [40]T. Kukao, H. Nakagawa, and N. Adachi, “Adaptive tracking control of nonholonomic mobile robot,” IEEE Transactions on Robotics and Automation, vol.16, pp. 609-615, Oct. 2000. [41]J. P. Laumond, P. E. Jacobs, M. Taix, and R. M. Murray, “A motion planner for nonholonomic mobile robots,” IEEE Transactions on Robotics and Automation, vol. 10, no. 5, pp. 577-593, Oct. 1994. [42]K. S. Leung, M. L. Wong, W. Lam, Z. Wang, and K. Xu, “Learning nonlinear multiregression networks based on evolutionary computation,” IEEE Transactions on Systems, Man, and Cybernetics, part-B, vol. 32, no. 5, pp. 630-644, Oct. 2002. [43]T.-H. S. Li, C. Y. Chen, et al., “An autonomous surveillance and security robot team,” IEEE Workshop on Advanced Robotics and Its Social Impacts, 2007, pp. 1-6. [44]T.-H. S. Li, C. L. Kuo, and N. R. Guo, “Design of an EP-based fuzzy sliding-mode control for a magnetic ball suspension system,” Chaos, Solitons & Fractals, vol. 33, no. 5, pp. 1523-1531, Aug. 2007. [45]T. M. Lim and D. Zhang, “Control of Lorentz force-type self-bearing motors with hybrid PID and robust model reference adaptive control scheme,” Mechatronics, vol. 18, pp. 35-45, 2008. [46]C. K. Lin, “Robust adaptive critic control of nonlinear systems using fuzzy basis function networks: An LMI approach,” Information Sciences, vol. 177, pp. 4934-4946, 2007. [47]W. S. Lin, C. L. Huang, and M. K. Chuang, “Hierarchical fuzzy control for autonomous navigation of wheeled robots,” IEE Proceeding Control Theory and Applications, vol. 152, pp. 598-606, Sept. 2005. [48]Y. J. Liu and W. Wang, “Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems,” Information Sciences, vol. 177, pp. 3901-3917, 2007. [49]A. M. B. Loach and S. Drakunov, “Stabilization and Tracking in the nonholonomic integrator via sliding modes,” System & Control Letters, vol.29, no.2, pp. 91-99, 1996. [50]Z. Lu, L. S. Shieh, G. Chen, and N. P. Coleman, “Adaptive feedback linearization control of chaotic systems via recurrent high-order neural networks,” Information Sciences, vol. 176, pp. 2337-2354, 2006. [51]P. Melin and O. Castillo, “A new method for adaptive control of non-linear plants using type-2 fuzzy logic and neural networks,” International Journal of General Systems, vol. 33, pp. 289-304, 2004. [52]R. M. Murray and S. Sastry, “Nonholonomic motion planning: Steering using sinusoids,” IEEE Transactions on Automatic Control, vol.38, no.5, pp. 700-716, 1993. [53]G. Oriolo, A. D. Luca, and M. Vendittelli, “WMR control via dynamic feedback linearization: design, implementation, and experimental validation,” IEEE Transactions on Control Systems Technology, vol. 10, pp. 835-852, 2002. [54]P. R. Ouyang, W. J. Zhang, and M. M. Gupta, “An adaptive switching learning control method for trajectory tracking of robot manipulators,” Mechatronics, vol. 16, pp. 51-61, 2006. [55]F. Pourboghrat and M. P. Karlsson, “Adaptive control of dynamic mobile robots with nonholonomic constraints,” Computers and Electrical Engineering, vol. 28, pp. 241-253, 2002. [56]R. E. Precup and S. Preitl, “PI-Fuzzy controllers for integral plants to ensure robust stability,” Information Sciences, vol. 177, pp. 4410-4429, 2007. [57]R. G. Reynolds and S. Zhu, “Knowledge-based function optimization using fuzzy cultural algorithms with evolutionary programming,” IEEE Transactions on Systems, Man, and Cybernetics, part-B, vol. 31, no. 1, pp. 1-18, Feb. 2001. [58]S. K. Saha, J. Angeles, and J. Darcovich, “The design of kinematically isotropic rolling robots with omnidirectional wheels,” Mechanism and Machine Theory, vol. 30, no. 8, pp. 1127-1137, Nov. 1995. [59]E. N. Sanchez, H. M. Becerra, and C. M. Velez, “Combining fuzzy, PID and regulation control for an autonomous mini-helicopter,” Information Sciences, vol. 177, pp. 1999-2022, 2007. [60]R. Sepúlveda, O. Castillo, P. Melin, A. Rodríguez-Díaz, and O. Montiel, “Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic,” Information Sciences, vol. 177, pp. 2023-2048, 2007. [61]J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood Cliffs, NJ: Prentice-Hall, 1991. [62]S. Sun, “Designing approach on trajectory-tracking control of mobile robot,” Robotics and Computer-Integrated Manufacturing, vol. 21, pp. 81-85, 2005. [63]K. N. Tamása, D. Raffaello, and G. Pritam, “Near-optimal dynamic trajectory generation and control of an omnidirectional vehicle,” Robotics and Autonomous Systems, vol. 46, no. 1, pp. 47-64, Jan. 2004. [64]C. S. Ting, “An observer-based approach to controlling time-delay chaotic systems via Takagi-Sugeno fuzzy model,” Information Sciences, vol. 177, pp. 4314-4328, 2007. [65]A. V. Topalov, J. H. Kim, and T. P. Proychev, “Fuzzy-net control of non-holonomic mobile robot using evolutionary feedback-error-learning,” Robotics and Autonomous Systems, vol. 23, pp. 187-200, 1998. [66]M. Wada, H. H. Asada, “A holonomic omnidirectional vehicle with a reconfigurable footprint mechanism and its application to wheelchairs,” in Proceedings of IEEE International Conference on Robotics and Automation, 1998, pp. 774-780. [67]R. J. Wai, M. A. Kuo, and J. D. Lee, “Cascade direct adaptive fuzzy control design for a nonlinear two-axis inverted-pendulum servomechanism,” IEEE Transactions on Systems, Man, and Cybernetics, part-B, vol. 38, no. 2, pp. 439-454, April 2008. [68]R. J. Wai, C. M. Lin, and C. F. Hsu, “Adaptive fuzzy sliding-mode control for electrical servo drive,” Fuzzy Sets and Systems, vol. 143, no. 2, pp. 295-310, 2004. [69]R. J. Wai, Z. W. Yang, “Adaptive fuzzy neural network control design via a T–S fuzzy model for a robot manipulator including actuator dynamics,” IEEE Transactions on Systems, Man, and Cybernetics, part-B, vol. 38, no. 5, pp. 1326-1346, Oct. 2008. [70]J. Wang, A. B. Rad, and P. T. Chan, “Indirect adaptive fuzzy sliding-mode control: Part I: Fuzzy switching,” Fuzzy Sets and System, vol. 122, pp. 21-30, 2001. [71]K. Watanabe, Y. Shiraishi, S. G. Tzafestas, J. Tang, and T. Fukuda, “Feedback control of an omnidirectional autonomous platform for mobile service robots,” Robotics and Autonomous Systems, vol. 22, no. 3-4, pp. 315-330, July 1998. [72]Z. Weng, G. Chen, L. S. Shieh, and J. Larsson, “Evolutionary programming Kalman filter,” Information Sciences, vol. 129, pp. 197-210, 2000. [73]R. L. Williams, II, B. E. Carter, P. Gallina, and G. Rosati, “Dynamic model with slip for wheeled omnidirectional robots,” IEEE Transactions on Robotics and Automation, vol. 18, no. 3, pp. 285-293, 2002. [74]C. C. Wit and O. J. Sordalen, “Exponential stabilization of mobile robots with nonholonomic constraints,” IEEE Transactions on Automatic Control, vol. 13, pp. 1791-1797, 1992. [75]C. C. Wong, Y. H. Lin, S. A. Lee, and C. H. Tsai, “GA-based fuzzy system design in FPGA for an omni-directional mobile robot,” Journal of Intelligent and Robotic Systems, vol. 44, no. 4, pp. 327-347, Dec. 2005. [76]H. N. Wu and H. X. Li, “Finite-dimensional constrained fuzzy control for a class of nonlinear distributed process systems,” IEEE Transactions on Sysems, Man, and Cybernetics, part-B, vol. 37, no. 5, pp. 1422-1430, Oct. 2007. [77]J. Wu, D. Pu, and H. Ding, “Adaptive robust motion control of SISO nonlinear systems with implementation on linear motors,” Mechatronics, vol. 17, pp. 263-270, 2007. [78]J. M. Yang and J. H. Kim, “Sliding mode control for trajectory of nonholonomic wheeled mobile robots,” IEEE Transactions on Robotics and Automaion, vol.15, no.3, pp. 578-587, 1999. [79]S. J. Yoo, J. B. Park and Y. H.Choi, “Indirect adaptive control of nonlinear dynamic systems using self recurrent wavelet neural networks via adaptive learning rates,” Information Sciences, vol. 177, pp. 3074-3098, 2007. [80]C. Valdivieso and A. Cipriano, “Fault detection and isolation system design for omnidirectional soccer-playing robots,” IEEE International Symposium on Computer-Aided Control Systems Design, 2006, pp. 2641-2646. [81]L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338-353, 1965. [82]L. A. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning - I,” Information Sciences, vol. 8, pp. 199-249, 1975. [83]L. A. Zadeh, “Toward a generalized theory of uncertainty (GTU) - an outline,” Information Sciences, vol. 172, pp. 1-40, 2005.
|