(3.239.33.139) 您好!臺灣時間:2021/03/03 09:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:沈俊旭
研究生(外文):Chun-Hsu Shen
論文名稱:(Mg0.95Ni0.05)TiO3介電陶瓷之研究及其在微波頻段之應用
論文名稱(外文):Investigation of (Mg0.95Ni0.05)TiO3 Dielectric Ceramics and Applications at Microwave Frequencies
指導教授:魏炯權黃正亮
指導教授(外文):Chung-Chuang WeiCheng-Liang Huang
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:英文
論文頁數:142
中文關鍵詞:介電微波
外文關鍵詞:microwavedielectric
相關次數:
  • 被引用被引用:1
  • 點閱點閱:353
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:92
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於通訊科技的快速發展,且介電共振器(DR)又具有可以有效降低微波電路尺寸的優點,使得介電陶瓷材料在微波元件(如:濾波器、震盪器及天線等)的小型化上佔有相當重要的地位。以介電陶瓷材料所製作之介電共振器應用在微波領域中,需具有高介電常數(εr)、高品質因素(Q×f)及接近於零的溫度飄移係數(τf)等特性。針對以上所述,在本論文中將區分為下列之三大部分來進行研究與探討:
一、 開發具有高介電常數、低損失及接近於零之溫度係數的微波陶瓷介電材料:
a. (Mg0.95Ni0.05)TiO3微波陶瓷材料之備製及其介電特性之研究。
b. 混合兩種不同之陶瓷材料,依照不同的比例來研究,嘗試發展出新的陶瓷系統得到接近於零的溫度飄移係數(τf)。
二、 二次相(Mg0.95M2+0.05)Ti2O5 (M2+=Co, Ni, Zn)微波陶瓷材料之備製及其介電特性之研究。
三、以前面所完成之介電陶瓷系統來作為元件的基板材料,來應用在微帶線之濾波器的設計上,希望藉由提升基板的介電常數及降低基板的介電損失,可以得到較小之濾波器尺寸及較好之濾波效果。
With recent progress in microwave communication systems, microwave dielectric ceramics have become increasingly important in the miniaturization of microwave devices such as filters, oscillators, and antennas. The advantage of using dielectric resonators is that they enable the size reduction of microwave components. Requirements for these dielectric ceramics are combined with a high dielectric constant (εr) for possible size miniaturization, a high quality factor (Q×f) for high frequency selectivity and low signal attenuation, and a near-zero temperature coefficient of resonant frequency (τf) for temperature stable circuits. This dissertation includes the study of low-loss microwave dielectric materials, how to combine two or more materials to achieve near-zero temperature coefficient of resonant frequency (τf), and their applications as planar filters at microwave frequencies.
1. Development of a novel microwave ceramic material which has a high dielectric constant, low loss, and a near-zero temperature coefficient:
a. With the partial replacement of Mg by Ni, (Mg0.95Ni0.05)TiO3 ceramics with an ilmenite-type structure were prepared and studied. The dielectric constant values (εr) saturated at 17-17.35. Q×f values of 94,000-188,000 GHz can be obtained with sintering at a temperature in the range of 1300-1350°C for 4 h. The temperature coefficient of resonant frequency (τf) was not sensitive to the sintering temperature. An εr value of 17.35, a Q×f value of 188,000 GHz, and a τf value of -47 ppm/°C were obtained for (Mg0.95Ni0.05)TiO3 ceramics sintered at 1350°C for 4 h.
b. To compensate the temperature coefficient (τf), SrTiO3, CaTiO3, Ca0.6La0.8/3TiO3, Ca0.61Nd0.26TiO3, and Ca0.8Sm0.4/3TiO3, were added to the (Mg0.95Ni0.05)TiO3 ceramic, respectively. The microstructures and the microwave dielectric properties of these ceramic systems were investigated. A Two-phase system was confirmed by XRD patterns.
2. Investigation of the dielectric properties of the second phase (Mg0.95M2+0.05)Ti2O5 (M2+=Co, Ni, Zn) ceramics at microwave frequencies:
In this section, the second phase of (Mg0.95M2+0.05)Ti2O5 (M2+ =Co, Ni, and Zn) in (Mg0.95M2+0.05)TiO3 (M2+ =Co, Ni, and Zn) ceramics were investigated. (Mg0.95M2+0.05)Ti2O5 solid solutions with an orthorhombic structure were detected throughout the entire experiment. The (Mg0.95M2+0.05)Ti2O5 ceramics had the following microwave dielectric properties: εr of 16~18.5, Q×f of 28,000~68,000 GHz, and τf of -38~-47 ppm/°C sintered at 1425-1450°C for 4 h.
3. Design and fabrication of planar filters:
A compact hairpin filter with a 0o feed structure was investigated in this section. Its size can be reduced by using a high permittivity ceramic substrate. The selectivity and stop-band rejection of the designed filters can be significantly improved by utilizing a skew-symmetric (zero degree) feed structure. The responses of the compact hairpin filters using Al2O3 (εr= 9.7, Q × f = 35,000 GHz) and 0.9(Mg0.95Co0.05)TiO3-0.1Ca0.61Nd0.26TiO3 ceramics with 0.25wt% V2O5 (εr = 21.7, Q × f = 58,000 GHz, τf =-10.0 ppm/°C) ceramic substrates were designed to have a center frequency of 2.0 GHz. The compact size, low-loss, sharp response and performance of the filter are presented in this study.
Abstract…Ⅰ
Contents……Ⅶ
Table Captions……………………………Ⅹ
Figure Captions…………………………………XII
Chapter 1 Introduction…………………………1
Chapter 2Theory and Measurements of Dielectric Resonator
2-1 Dielectric Theorem…………………………11
2-2 Measurements of Microwave Dielectric Properties....14
2-3 Applied to Medium for Transmission Lines…19
2-4 Basic Theories of Microwave Filters……20
Chapter 3 Microstructures and Microwave Dielectric Properties of (Mg0.95Ni0.05)TiO3 ceramics
3-1 The replacement of Mg2+ by Ni2+ in MgTiO3…28
3-1-1 Experimental Procedures………29
3-1-2 Characteristics Analysis and Measurement of Microwave Dielectric Properties…………30
3-1-3 Results and Discussions……………33
3-2 Compensation of the Temperature Coefficient in (Mg0.95Ni0.05)TiO3 Ceramics……………………37
3-2-1 Sample Preparation……………………37
3-2-2 Characteristic Analysis and Measurement of Microwave Dielectric Properties……………38
3-2-3 Results and Discussions……………………39
Chapter 4 Investigation of the Dielectric Properties of the Second Phase (Mg0.95M2+0.05)Ti2O5 (M2+=Co, Ni, Zn) Ceramics at Microwave Frequencies
4-1 Experimental Procedures………………………96
4-1-1 Sample Preparation………………………96
4-1-2 Characteristics Analysis and Measurement of Microwave
Dielectric Properties……………………97
4-2 Results and Discussion…………….98
Chapter 5 Cross-Coupled Hairpin Filter Design Using
High-Permittivity Substrates
5-1 Stepped Impedance Resonator (SIR)………113
5-1-1 Basic Structure of SIR…………113
5-1-2 Resonance Conditions and Resonator Electrical Length…...114
5-1-3 Analysis of Filters With Zero Feed Tapping Feed Lines…...115

5-2 Compact Size Filters………118
Chapter 6 Conclusions and Future Works
6-1 Conclusions………………………………………127
6-2 Future Works…………………131
References…………………………………134
[1.1] R. D. Richtmyer, “ Dielectric Resonators,” J. Appl. Phys. Vol. 10 (1939) 391-398.
[1.2] K. Wakino, K. Minai and H. Tamura, ” Microwave Characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators ”, J. Am. Ceram. Soc. 67 (1984) 278-281.
[1.3] S. B. Cohn, “ Dissipation Loss in Multi-Coupled Resonator Filter,” Proc. IRE, Vol 47 (1957) 1342-1348.
[1.4] A. Yamada, Y. Utsumi, H. Watarai and K. Sato, “ Preparation of Sr(Zr,Ti)O3 Ceramics and Their Dielectric Properties at Microwave frequencies “, Jpn. J. Appl. Phys., Vol.31 (1992) 3148-3151.
[1.5] V. M. Ferreir, F. Azough, I. L. Baptista and R. Freer, ”Magnesium Titanate Microwave Dielectric Ceramics”, Ferroelectrics., 133 (1992) 127-132.
[1.6] W. Y. Lin and R. F. Spreyer, “ Dielectric Properties of Microstructure-Controlled Ba2Ti9O20 Resonators”, J. Am. Ceram. Soc., 82 (1999) 325-330.
[1.7] W. Y. Lin and R. F. Spreyer, “ Microwave Properties of Ba2Ti9O20 Doped with Zirconium and Tin Oxides”, J. Am. Ceram. Soc., 82 (1999) 1207-1211.
[1.8] T. Takada, S.F. Wang, S. Yoshikawa, S.J. Jang and R. E. Newnham, “ Effect of Glass Additions on BaO-TiO2-WO3 Microwave Ceramics”, J. Am. Ceram. Soc., 77 (1994) 1909-1916.
[1.9] W. S. Kim, T. H. Hong, E. S. Kim and K. H. Yoon, “ Microwave Dielectric Properties and Far Infrared Reflectively Spectra of the (Zr0.8,Sn0.2)TiO4 Ceramics with Additives “, Jpn. J. Appl. Phys., Vol.37(1998) 5367-5371.
[1.10] R. Kudesia, A. E. Mchale and R. L. Snyder, “Effect of LaO2/ZnO Additives on Microstructure and Microwave Dielectric Properties of Zr0.8Sn0.2TiO4 Ceramics “, J. Am. Ceram. Soc., 77 (1994) 3215-3220.
[1.11] H. Ikawa, A. Iwai, Kazayuki, H. Shimojima, K. Urabe and S. Udagawa, “ Phase Transformation and Thermal Expansion of Zirconium and Hafnium Titinates and Their Solid Solutions ”, J. Am. Ceram. Soc., 71(1988) 120-127.
[1.12] S. I. Hirano, T. Hayashi and A. Hattori, “ Chemical Processing and Microwave Characteristicss of (Zr,Sn)TiO4 Microwave Dielectric“, J. Am. Ceram. Soc., 74(1991) 1320-1324.
[1.13] N. Michiura, T. Tatekawa, Y. Higuchi and H. Tamara, “ Role of Donor and Acceptor Ions in the Dielectric Loss Tangent of (Zr0.8Sn0.2)TiO4 Dielectric Resonator Material “, J. Am. Ceram. Soc., 78(1995) 1793-1801.
[1.14] K. R. Han, J. W. Jang, S. Y. Cho, D. Y. Jeong and K. S. Hong, “Preparation and dielectric Properties of Low–Temperature-Sinterable (Zr0.8Sn0.2)TiO4 Powder “, J. Am. Ceram. Soc., 81(1998) 1209-1214.
[1.15] L. Chai, M. A. Akbas, P. K. Davies and J. B. Parise, “Cation Ordering Transformation in Ba(Mg1/3Ta2/3)O3- BaZrO3 Perovskite Solid Solution”, Mat. Res. Bull., 33 (1998) 1261-1269.
[1.16] O. Renount, J. P. Boilot and F. Chaput, “ Sol-gel Processing and Microwave Characteristics of f Ba(Mg1/3Ta2/3)O3 Dielectrics ”, J. Am. Ceram. Soc., 75 (1992) 3337-3340.
[1.17] S. Katayama, I. Yoshinaga, N. Yamada and T. Nagai, “ Low-Temperature Synthesis of Ba(Mg1/3Ta2/3)O3 Ceramics from Ba-Mg-Ta Alkoxide Precursor ”, J. Am. Ceram. Soc., 79 (1996) 2059-2064.
[1.18] M. Furuya and A. Ochi, “Microwave Dielectric Properties for Ba(Mg1/3Ta2/3)O3-A(Mg1/2W1/2)O3 (A=Ba, Sr, and Ca) Ceramics”, Jpn. J. Appl. Phys., 33 (1994) 5482-5487.
[1.19] T. Nagai, M. Sugiyama, M. Sando and K. Niihara, “ Anomaly in the Infrared Active Phonon Modes and Its Relationship to the Dielectric Constant of (Ba1-xSrx)(Mg1/3Ta1/3)O3 Compound”, Jpn. J. Appl. Phys., 35 (1996) 5163-5167.
[1.20] S. B. Desu and H. M. O’Bryan, “ Microwave Loss of Ba(Zn1/3Ta2/3)O3 Ceramics ”, J. Am. Ceram. Soc., 68 (1983) 546-551.
[1.21] A. Yamada, Y. Utsumi and H. Watarai, “ The effect of Mn Addition on Dielectric Properties and Microstructure of BaO-Nd2O3-TiO2 Ceramics “, Jpn. J. Appl. Phys., 30 (1991) 2350-2353.
[1.22] C. C. Lee and P. Lin, “ Microwave Dielectric Properties of Microstructures (Ba1-xPbx)O-La2O3-4.7TiO2 Ceramics “, Jpn. J. Appl. Phys., 37. (1998) 878-884.
[1.23] K. Kageyama and m. Takata, “ Dielectric Characteristics od PbO-BaO-La2O3-TiO4 at Microwave Frequencies”, Jpn. J. Appl. Phys., 24. Supplement (1995) 1045-1047.
[1.24] S. Nishigaki, H. Kato, S. Yano and R. Kimimura, “ Microwave Dielectric Properties of (Ba,Sr)O-Sm2O3-TiO4 ceramics “, Am. Ceram. Soc. Bull., 66 (1987) 1406.
[1.25] K. Fukuda, I. Fujii, R. KiToh, Y. Cho and I. Awai, “ Influence of Rare Earth Ions on BaO- TiO4-Rare Earth Oxide Ceramics for Microwave Applications ”, Jpn. J. Appl. Phys., 32 (1993) 1712-1715.
[1.26] M. Valant and D. Suvorov, “ New High-Permittivity AgNb1-xTaxO3 Microwave Ceramics: Part II, Dielectric Characteristics”, J. Am. Ceram. Soc., 82 (1999) 88-93.
[1.27] M. Valant and D. Suvorov, “ New High-Permittivity AgNb1-xTaxO3 Microwave Ceramics: Part I, Crystal Stuctures and Phase-Decomposition Relations”, J. Am. Ceram. Soc., 82 (1999) 81-87.
[1.28] H. T. Kim, S. H. Kim, S. Nahm and J. D. Byun, “ Low-Temperature Sintering and Microwave Properties of Zinc Materitanate-Rutile Mixtures Using Boron”, J. Am. Ceram. Soc., 82 ( 1999 ) 3043-3048.
[1.29] C. L. Huang, R. J. Lin, “Effect of B2O3 Additives on Sintering and Microwave Dielectric Behaviors of CuO-Doped ZnNb2O6 Ceramics”, Jpn. J. Appl. Phys., 41 (2002) 758-760.
[1.30] M. H. Weng, C. L. Huang, “Lowering of sintering temperature and microwave dielectric properties of BaTi4O9 ceramics prepared by the polymeric precursor method”, J. Euro. Ceram. Soc., 22 (2002) 1693-1698.
[1.31] C. L. Huang, M. H. Weng, “The Microwave Dielectric Properties and the Microstructures of Bi(Nb, Ta)O4 Ceramics”, Jpn. J. Appl. Phys., 38 (1999) 5949-5952.
[1.32] W. Y. Lin, R. F., “Dielectric Properties of Microstructure-Controlled Ba2Ti9O20 Resonators”, J. Am. Ceram. Soc., 82 (1999) 325-330.
[1.33] C. F. Tseng, C. L. Huang, “Low-Dielectric Loss Characteristics of Nd(Co1/2Ti1/2)O3 Ceramics at Microwave Frequencies”, J. Am. Ceram. Soc., 90 (2007) 1619-1622.
[1.34] C. F. Tseng, C. L. Huang, “Dielectric Characteristics of Nd(Zn1/2Ti1/2)O3 Ceramics at Microwave Frequencies”, J. Am. Ceram. Soc., 89 (2006) 1465-1470.
[1.35] C. L. Huang, S. S. Liu, “Low-Loss Microwave Dielectrics in the (Mg1−xZnx)2TiO4 Ceramics”, J. Am. Ceram. Soc., 91 (2008) 3428-3430.
[1.36] K. Wakino, “Recent Development of Dielectric Resonator Materials and Filters in Japan,” Ferroelectrics, 91 (1989) 69-86.
[1.37] J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon and H. J. Kim, “Microwave Dielectric Characteristic of Ilmenite-Type Titanates with High-Q Values,” Jpn. J. Appl. Phys. 33 (1994) 5466-70.
[1.38] C. L. Huang, J. J. Wang, and Y. P. Chang, “Dielectric Properties of Low Loss (1-x)(Mg0.95Zn0.05)TiO3-xSrTiO3 Ceramic System at Microwave Frequency,” J. Am. Ceram. Soc., 90 (2007) 858-862.
[1.39] C. L. Huang, C. F. Tseng, “High-Dielectric-Constant and Low-Loss Microwave Dielectric in the (1-x)Nd(Zn1/2Ti1/2)O3-xSrTiO3 System with a Zero Temperature Coefficient of Resonant Frequency”, J. Am. Ceram. Soc., 91 (2008) 2201-2204.
[1.40] Q. Zhang, and P. J. McGinn, “Characterization of Calcium Titanate–Magnesium Titanate Eutectic by Scanning Microwave Microscopy,” J. Am. Ceram., 89 (2006) 3817-3823.
[1.41] Y. C. Liou and S. L. Yang, ”Calcium-doped MgTiO3-MgTi2O5 Ceramics Prepared Using a Reaction-sintering Process,” Mater. Sci. Eng. B, 142 (2007) 116-120.
[1.42] A. Belous, O. Ovchar, D. Durilin, M. M. Krzmanc, M. Valant, and D. Suvorov, “High-Q Microwave Dielectric Materials Based on the Spinel Mg2TiO4,” J. Am. Ceram. Soc., 89 (2006) 3441-3445.
[1.43] H. K. Shin, H. Shin, S. T. Bae, S. Lee, and K. S. Hong, “Effect of Oxygen Partial Pressure During Liquid-Phase Sintering on the Dielectric Properties of 0.9MgTiO3–0.1CaTiO3,” J. Am. Ceram., 91 (2008) 132-138.
[1.44] H. Shin, H. K. Shin, H. S. Jung, S. Y. Cho and K. S. Hong, “Phase Evolution and Dielectric Properties of MgTi2O5 Ceramic Sintered with Lithium Borosilicate Glass,” Mater. Res. Bull., 40 (2005) 2021-2028.
[1.45] C. L. Huang and S. H. Liu, “Characterization of Extremely Low Loss Dielectrics (Mg0.95Zn0.05)TiO3 at Microwave Frequency,” Jpn. J. Appl. Phys., 46 (2007) 283-285.
[1.46] C. L. Huang, C. L. Pan, “Microwave Dielectric Properties and Mixture Behavior of (Mg0.95Co0.05)TiO3–Ca0.6La0.8/3TiO3 Ceramic System,” J. Alloy Comp., 461 (2008) 521-28.
[1.47] Y.-B. Chen, C.-L. Huang, “New Dielectric Material System of x(Mg0.95Zn0.05Ti)O3-(1- x)Ca0.8Sm0.4/3TiO3 at Microwave Frequency”, Mate. Lett., 62 (2008)2454-2457.
[1.48] C. H. Shen and C. L. Huang, “Microwave Dielectric Properties and Sintering Behaviors of (Mg0.95Ni0.05)TiO3–CaTiO3 Ceramic System”, J. Alloy Comp., Available online 17 June 2008.
[1.49] R. Levy, “Filters with single transmission zeros at real or imaginary frequencies,” IEEE Trans. Microwave Theory Tech, 24 (1976) 172-181.
[1.50] K. T. Jokela, “Narrow-band stripline or microstrip filters with transmission zeros at real and imaginary frequencies,” IEEE Trans. Microwave Theory Tech, 28 (1980) 542–547.
[1.51] S.-Y. Lee and C.-M. Tsai, “New cross-coupled filter design using improved hairpin resonators,” IEEE Trans. Microwave Theory Tech, 48 (2000) 2482–2490.
[1.52] E. G. Cristal and S. Frankel, “Hairpin-line and hybrid hairpin-line/half-wave parallel-coupled-line filters,” IEEE Trans. Microwave Theory Tech, 20 (1972) 719-728.
[1-53] G. L. Matthaei, N. O. Fenzi, R. J. Forse, ”Hairpin-comb filtersfor HTS and other narrow-band applications,” IEEE Trans. Microwave Theory Tech, 45 (1997) 1226-1231.
[1.54] J. S. Hong and M. J. Lancaster, ”Cross-coupled microstrip hairpin-resonator filters,” IEEE Trans. Microwave Theory Tech, 46 (1998) 118-122.
[1.55] S. Caspi and J. Adelman, “Design of combline and interdigital filter with tapped-line input,” IEEE Trans Microwave Theory Tech, 36 (1988) 759-763.
[1.56] G.L. Matthaci, “Comb-line bandpass filter of narrow or moderate bandwidth,” IEEE Trans Microwave Theory Tech, 6 (1963) 82-91.
[1.57] U. H. Gysel, “New theory and design for hairpin-line filters,” IEEE Trans Microwave Theory Tech, 22 (1974) 523-531.
[1.58] E. G. Cristal, “Tapped-line coupled transmission lines with applications to interdigital and combline filters,” IEEE Trans. Microwave Theory and Tech, 23 (1975) 1007-1012.
[1.59] J. S. Wang, “Microstrip tapped-line filter design,” IEEE Trans. Microwave Theory and Tech, 27 (1979) 44-50.
[2.1] W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics,” 2nd
edition, Wiley, New York, (1986).
[2.2] G. Burns, “Solid State Physics,” Academic Press, Inc., 1985.
[2.3] B. D. Silvermann, “Microwave Absorption in cubic Strontium Titanate,” Phys. Rev., 125 (1962) 1921-1930.
[2.4] C. H. Perry, D. J. McCarthy and G. Rupprecht, “Dielectric Dispersion of Some Pervoskite Zirconate,” Phys. Rev., 126 (1962) 1710-1721.
[2.5] K. Wakino, M. Murata, “Far-Infrared Reflection Spectra of Ba(Zn,Ta)O3-BaZrO3 Dielectric Resonator Material.” J. Am. Ceram. Soc., 69 (1986) 34-37.
[2.6] W. E. Courtney, “Analysis and Evaluation of Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators,” IEEE Trans. Microwave Theory Tech., MTT-18 (1970) 476-485.
[2.7] B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive in the Millimeter Range,” IEEE Trans. Microwave Theory Tech., MTT-16 (1985) 402-406.
[2.8] Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method,” IEEE Trans. Microwave Theory Tech., MTT-33 (1985) 586-592.
[3.1] A. Yokoi, H. Ogawa, “Microwave dielectric properties of BaO-Ta2O5 -TiO2 system,” J. Euro. Ceram. Soc. 26 (2006) 2069-2074.
[3.2] H. Megaw, W.B. Saunders, Philadelphia, “Crystal Structures,” (1973) 231.
[3.3] V. M. Ferreir, F. Azough, I. L. Baptista, “Magnesium titanate microwave dielectric ceramics,” Ferroelectrics, 133 (1992) 127-132.
[3.4] B. W. Hakki, P. D. Coleman, ‘‘A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,” IEEE Trans. Microwave Theory Technol., 8 (1960) 402-410.
[3.5] Wheless, P. and Kajfez, D., “The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators,” IEEE MTT-S Digest, 85 (1985) 473-476.
[3.6] P. H. Sun, T. Nakamura, Y. J. Shan, “Dielectric Behavior of (1-x)LaAlO3–xSrTiO3 Solid Solution System at Microwave Frequencies,” Jpn. J. Appl. Phys., 37 (1998) 5625-5629.
[3.7] S. Kucheiko, J. W. Choi, H. J. Kim, “Microwave Dielectric Properties of CaTiO3-Ca(Al1/2Ta1/2)O3 Ceramics,” J. Am. Ceram. Soc., 79 (1996) 2739-2743.
[3.8] W. S. Kim, T. H. Kim, “Microwave Dielectric Properties and Far Infrared Reflectivity Spectra of the (Zr0.8Sn0.2)TiO4 Ceramics with Additives,” Jpn. J. Appl. Phys., 37 (1998) 5367-5371.
[4.1] X. J. Kuang, H. T. Xia and F. H. Liao, ”Doping Effects of Ta on Conductivity and Microwave Dielectric Loss of MgTiO3 Ceramics,” J. Am. Ceram. Soc., 90 [10] (2007) 3142-3147.
[4.2] C. L. Huang, M. H. Weng and C. C. Wu, “Improved High Q Value of MgTiO3-CaTiO3 Microwave Dielectric Ceramics at Low Sintering Temperature,” Mater. Res. Bull., 36 [11] (2001) 2741-2750.
[4.3] S. J. Penn, N. M. Alford, A. Templeton, “Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina,” J. Am. Ceram. Soc., 80 [7] (1997) 1885–1888
[5.1] M. Makimoto, and S. Yamashita, “Bandpass Filters Using Parallel Coupled Strip-line Stepped Impedance Resonators,” IEEE Trans. Microwave Theory Tech., 45 (1980) 141-143.
[5.2] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, “Microstrip lines and slotlines,” second edition., Boston: Artech House, 1996.
[5.3] J. S. Hong, and M. J. Lancaster, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. Microwave Theory Tech., vol. 44 (1996) 2099-2109.
[5.4] L. H. Hsieh, K. Chang, “Tunable Microstrip Bandpass Filters With Two Transmission Zeros,” IEEE Trans. Microwave Theory Tech, 51 (2003) 520-525.
[5.5] T. Edwards, “Foundations for microstrip circuit design,” second edition., UK: Wiley, 1991.
[5.6] Peter A. Rizzi., Microwave Engineering Passive Circuits, chap9, Prentice Hall, 1988.
[5.7] I. Bahl, P. Bhartia, “ Microwave solid state circuit design,” chap6 John Wiley&Sons1988.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔