|
[1.1] R. D. Richtmyer, “ Dielectric Resonators,” J. Appl. Phys. Vol. 10 (1939) 391-398. [1.2] K. Wakino, K. Minai and H. Tamura, ” Microwave Characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators ”, J. Am. Ceram. Soc. 67 (1984) 278-281. [1.3] S. B. Cohn, “ Dissipation Loss in Multi-Coupled Resonator Filter,” Proc. IRE, Vol 47 (1957) 1342-1348. [1.4] A. Yamada, Y. Utsumi, H. Watarai and K. Sato, “ Preparation of Sr(Zr,Ti)O3 Ceramics and Their Dielectric Properties at Microwave frequencies “, Jpn. J. Appl. Phys., Vol.31 (1992) 3148-3151. [1.5] V. M. Ferreir, F. Azough, I. L. Baptista and R. Freer, ”Magnesium Titanate Microwave Dielectric Ceramics”, Ferroelectrics., 133 (1992) 127-132. [1.6] W. Y. Lin and R. F. Spreyer, “ Dielectric Properties of Microstructure-Controlled Ba2Ti9O20 Resonators”, J. Am. Ceram. Soc., 82 (1999) 325-330. [1.7] W. Y. Lin and R. F. Spreyer, “ Microwave Properties of Ba2Ti9O20 Doped with Zirconium and Tin Oxides”, J. Am. Ceram. Soc., 82 (1999) 1207-1211. [1.8] T. Takada, S.F. Wang, S. Yoshikawa, S.J. Jang and R. E. Newnham, “ Effect of Glass Additions on BaO-TiO2-WO3 Microwave Ceramics”, J. Am. Ceram. Soc., 77 (1994) 1909-1916. [1.9] W. S. Kim, T. H. Hong, E. S. Kim and K. H. Yoon, “ Microwave Dielectric Properties and Far Infrared Reflectively Spectra of the (Zr0.8,Sn0.2)TiO4 Ceramics with Additives “, Jpn. J. Appl. Phys., Vol.37(1998) 5367-5371. [1.10] R. Kudesia, A. E. Mchale and R. L. Snyder, “Effect of LaO2/ZnO Additives on Microstructure and Microwave Dielectric Properties of Zr0.8Sn0.2TiO4 Ceramics “, J. Am. Ceram. Soc., 77 (1994) 3215-3220. [1.11] H. Ikawa, A. Iwai, Kazayuki, H. Shimojima, K. Urabe and S. Udagawa, “ Phase Transformation and Thermal Expansion of Zirconium and Hafnium Titinates and Their Solid Solutions ”, J. Am. Ceram. Soc., 71(1988) 120-127. [1.12] S. I. Hirano, T. Hayashi and A. Hattori, “ Chemical Processing and Microwave Characteristicss of (Zr,Sn)TiO4 Microwave Dielectric“, J. Am. Ceram. Soc., 74(1991) 1320-1324. [1.13] N. Michiura, T. Tatekawa, Y. Higuchi and H. Tamara, “ Role of Donor and Acceptor Ions in the Dielectric Loss Tangent of (Zr0.8Sn0.2)TiO4 Dielectric Resonator Material “, J. Am. Ceram. Soc., 78(1995) 1793-1801. [1.14] K. R. Han, J. W. Jang, S. Y. Cho, D. Y. Jeong and K. S. Hong, “Preparation and dielectric Properties of Low–Temperature-Sinterable (Zr0.8Sn0.2)TiO4 Powder “, J. Am. Ceram. Soc., 81(1998) 1209-1214. [1.15] L. Chai, M. A. Akbas, P. K. Davies and J. B. Parise, “Cation Ordering Transformation in Ba(Mg1/3Ta2/3)O3- BaZrO3 Perovskite Solid Solution”, Mat. Res. Bull., 33 (1998) 1261-1269. [1.16] O. Renount, J. P. Boilot and F. Chaput, “ Sol-gel Processing and Microwave Characteristics of f Ba(Mg1/3Ta2/3)O3 Dielectrics ”, J. Am. Ceram. Soc., 75 (1992) 3337-3340. [1.17] S. Katayama, I. Yoshinaga, N. Yamada and T. Nagai, “ Low-Temperature Synthesis of Ba(Mg1/3Ta2/3)O3 Ceramics from Ba-Mg-Ta Alkoxide Precursor ”, J. Am. Ceram. Soc., 79 (1996) 2059-2064. [1.18] M. Furuya and A. Ochi, “Microwave Dielectric Properties for Ba(Mg1/3Ta2/3)O3-A(Mg1/2W1/2)O3 (A=Ba, Sr, and Ca) Ceramics”, Jpn. J. Appl. Phys., 33 (1994) 5482-5487. [1.19] T. Nagai, M. Sugiyama, M. Sando and K. Niihara, “ Anomaly in the Infrared Active Phonon Modes and Its Relationship to the Dielectric Constant of (Ba1-xSrx)(Mg1/3Ta1/3)O3 Compound”, Jpn. J. Appl. Phys., 35 (1996) 5163-5167. [1.20] S. B. Desu and H. M. O’Bryan, “ Microwave Loss of Ba(Zn1/3Ta2/3)O3 Ceramics ”, J. Am. Ceram. Soc., 68 (1983) 546-551. [1.21] A. Yamada, Y. Utsumi and H. Watarai, “ The effect of Mn Addition on Dielectric Properties and Microstructure of BaO-Nd2O3-TiO2 Ceramics “, Jpn. J. Appl. Phys., 30 (1991) 2350-2353. [1.22] C. C. Lee and P. Lin, “ Microwave Dielectric Properties of Microstructures (Ba1-xPbx)O-La2O3-4.7TiO2 Ceramics “, Jpn. J. Appl. Phys., 37. (1998) 878-884. [1.23] K. Kageyama and m. Takata, “ Dielectric Characteristics od PbO-BaO-La2O3-TiO4 at Microwave Frequencies”, Jpn. J. Appl. Phys., 24. Supplement (1995) 1045-1047. [1.24] S. Nishigaki, H. Kato, S. Yano and R. Kimimura, “ Microwave Dielectric Properties of (Ba,Sr)O-Sm2O3-TiO4 ceramics “, Am. Ceram. Soc. Bull., 66 (1987) 1406. [1.25] K. Fukuda, I. Fujii, R. KiToh, Y. Cho and I. Awai, “ Influence of Rare Earth Ions on BaO- TiO4-Rare Earth Oxide Ceramics for Microwave Applications ”, Jpn. J. Appl. Phys., 32 (1993) 1712-1715. [1.26] M. Valant and D. Suvorov, “ New High-Permittivity AgNb1-xTaxO3 Microwave Ceramics: Part II, Dielectric Characteristics”, J. Am. Ceram. Soc., 82 (1999) 88-93. [1.27] M. Valant and D. Suvorov, “ New High-Permittivity AgNb1-xTaxO3 Microwave Ceramics: Part I, Crystal Stuctures and Phase-Decomposition Relations”, J. Am. Ceram. Soc., 82 (1999) 81-87. [1.28] H. T. Kim, S. H. Kim, S. Nahm and J. D. Byun, “ Low-Temperature Sintering and Microwave Properties of Zinc Materitanate-Rutile Mixtures Using Boron”, J. Am. Ceram. Soc., 82 ( 1999 ) 3043-3048. [1.29] C. L. Huang, R. J. Lin, “Effect of B2O3 Additives on Sintering and Microwave Dielectric Behaviors of CuO-Doped ZnNb2O6 Ceramics”, Jpn. J. Appl. Phys., 41 (2002) 758-760. [1.30] M. H. Weng, C. L. Huang, “Lowering of sintering temperature and microwave dielectric properties of BaTi4O9 ceramics prepared by the polymeric precursor method”, J. Euro. Ceram. Soc., 22 (2002) 1693-1698. [1.31] C. L. Huang, M. H. Weng, “The Microwave Dielectric Properties and the Microstructures of Bi(Nb, Ta)O4 Ceramics”, Jpn. J. Appl. Phys., 38 (1999) 5949-5952. [1.32] W. Y. Lin, R. F., “Dielectric Properties of Microstructure-Controlled Ba2Ti9O20 Resonators”, J. Am. Ceram. Soc., 82 (1999) 325-330. [1.33] C. F. Tseng, C. L. Huang, “Low-Dielectric Loss Characteristics of Nd(Co1/2Ti1/2)O3 Ceramics at Microwave Frequencies”, J. Am. Ceram. Soc., 90 (2007) 1619-1622. [1.34] C. F. Tseng, C. L. Huang, “Dielectric Characteristics of Nd(Zn1/2Ti1/2)O3 Ceramics at Microwave Frequencies”, J. Am. Ceram. Soc., 89 (2006) 1465-1470. [1.35] C. L. Huang, S. S. Liu, “Low-Loss Microwave Dielectrics in the (Mg1−xZnx)2TiO4 Ceramics”, J. Am. Ceram. Soc., 91 (2008) 3428-3430. [1.36] K. Wakino, “Recent Development of Dielectric Resonator Materials and Filters in Japan,” Ferroelectrics, 91 (1989) 69-86. [1.37] J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon and H. J. Kim, “Microwave Dielectric Characteristic of Ilmenite-Type Titanates with High-Q Values,” Jpn. J. Appl. Phys. 33 (1994) 5466-70. [1.38] C. L. Huang, J. J. Wang, and Y. P. Chang, “Dielectric Properties of Low Loss (1-x)(Mg0.95Zn0.05)TiO3-xSrTiO3 Ceramic System at Microwave Frequency,” J. Am. Ceram. Soc., 90 (2007) 858-862. [1.39] C. L. Huang, C. F. Tseng, “High-Dielectric-Constant and Low-Loss Microwave Dielectric in the (1-x)Nd(Zn1/2Ti1/2)O3-xSrTiO3 System with a Zero Temperature Coefficient of Resonant Frequency”, J. Am. Ceram. Soc., 91 (2008) 2201-2204. [1.40] Q. Zhang, and P. J. McGinn, “Characterization of Calcium Titanate–Magnesium Titanate Eutectic by Scanning Microwave Microscopy,” J. Am. Ceram., 89 (2006) 3817-3823. [1.41] Y. C. Liou and S. L. Yang, ”Calcium-doped MgTiO3-MgTi2O5 Ceramics Prepared Using a Reaction-sintering Process,” Mater. Sci. Eng. B, 142 (2007) 116-120. [1.42] A. Belous, O. Ovchar, D. Durilin, M. M. Krzmanc, M. Valant, and D. Suvorov, “High-Q Microwave Dielectric Materials Based on the Spinel Mg2TiO4,” J. Am. Ceram. Soc., 89 (2006) 3441-3445. [1.43] H. K. Shin, H. Shin, S. T. Bae, S. Lee, and K. S. Hong, “Effect of Oxygen Partial Pressure During Liquid-Phase Sintering on the Dielectric Properties of 0.9MgTiO3–0.1CaTiO3,” J. Am. Ceram., 91 (2008) 132-138. [1.44] H. Shin, H. K. Shin, H. S. Jung, S. Y. Cho and K. S. Hong, “Phase Evolution and Dielectric Properties of MgTi2O5 Ceramic Sintered with Lithium Borosilicate Glass,” Mater. Res. Bull., 40 (2005) 2021-2028. [1.45] C. L. Huang and S. H. Liu, “Characterization of Extremely Low Loss Dielectrics (Mg0.95Zn0.05)TiO3 at Microwave Frequency,” Jpn. J. Appl. Phys., 46 (2007) 283-285. [1.46] C. L. Huang, C. L. Pan, “Microwave Dielectric Properties and Mixture Behavior of (Mg0.95Co0.05)TiO3–Ca0.6La0.8/3TiO3 Ceramic System,” J. Alloy Comp., 461 (2008) 521-28. [1.47] Y.-B. Chen, C.-L. Huang, “New Dielectric Material System of x(Mg0.95Zn0.05Ti)O3-(1- x)Ca0.8Sm0.4/3TiO3 at Microwave Frequency”, Mate. Lett., 62 (2008)2454-2457. [1.48] C. H. Shen and C. L. Huang, “Microwave Dielectric Properties and Sintering Behaviors of (Mg0.95Ni0.05)TiO3–CaTiO3 Ceramic System”, J. Alloy Comp., Available online 17 June 2008. [1.49] R. Levy, “Filters with single transmission zeros at real or imaginary frequencies,” IEEE Trans. Microwave Theory Tech, 24 (1976) 172-181. [1.50] K. T. Jokela, “Narrow-band stripline or microstrip filters with transmission zeros at real and imaginary frequencies,” IEEE Trans. Microwave Theory Tech, 28 (1980) 542–547. [1.51] S.-Y. Lee and C.-M. Tsai, “New cross-coupled filter design using improved hairpin resonators,” IEEE Trans. Microwave Theory Tech, 48 (2000) 2482–2490. [1.52] E. G. Cristal and S. Frankel, “Hairpin-line and hybrid hairpin-line/half-wave parallel-coupled-line filters,” IEEE Trans. Microwave Theory Tech, 20 (1972) 719-728. [1-53] G. L. Matthaei, N. O. Fenzi, R. J. Forse, ”Hairpin-comb filtersfor HTS and other narrow-band applications,” IEEE Trans. Microwave Theory Tech, 45 (1997) 1226-1231. [1.54] J. S. Hong and M. J. Lancaster, ”Cross-coupled microstrip hairpin-resonator filters,” IEEE Trans. Microwave Theory Tech, 46 (1998) 118-122. [1.55] S. Caspi and J. Adelman, “Design of combline and interdigital filter with tapped-line input,” IEEE Trans Microwave Theory Tech, 36 (1988) 759-763. [1.56] G.L. Matthaci, “Comb-line bandpass filter of narrow or moderate bandwidth,” IEEE Trans Microwave Theory Tech, 6 (1963) 82-91. [1.57] U. H. Gysel, “New theory and design for hairpin-line filters,” IEEE Trans Microwave Theory Tech, 22 (1974) 523-531. [1.58] E. G. Cristal, “Tapped-line coupled transmission lines with applications to interdigital and combline filters,” IEEE Trans. Microwave Theory and Tech, 23 (1975) 1007-1012. [1.59] J. S. Wang, “Microstrip tapped-line filter design,” IEEE Trans. Microwave Theory and Tech, 27 (1979) 44-50. [2.1] W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to Ceramics,” 2nd edition, Wiley, New York, (1986). [2.2] G. Burns, “Solid State Physics,” Academic Press, Inc., 1985. [2.3] B. D. Silvermann, “Microwave Absorption in cubic Strontium Titanate,” Phys. Rev., 125 (1962) 1921-1930. [2.4] C. H. Perry, D. J. McCarthy and G. Rupprecht, “Dielectric Dispersion of Some Pervoskite Zirconate,” Phys. Rev., 126 (1962) 1710-1721. [2.5] K. Wakino, M. Murata, “Far-Infrared Reflection Spectra of Ba(Zn,Ta)O3-BaZrO3 Dielectric Resonator Material.” J. Am. Ceram. Soc., 69 (1986) 34-37. [2.6] W. E. Courtney, “Analysis and Evaluation of Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators,” IEEE Trans. Microwave Theory Tech., MTT-18 (1970) 476-485. [2.7] B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive in the Millimeter Range,” IEEE Trans. Microwave Theory Tech., MTT-16 (1985) 402-406. [2.8] Y. Kobayashi and M. Katoh, “Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method,” IEEE Trans. Microwave Theory Tech., MTT-33 (1985) 586-592. [3.1] A. Yokoi, H. Ogawa, “Microwave dielectric properties of BaO-Ta2O5 -TiO2 system,” J. Euro. Ceram. Soc. 26 (2006) 2069-2074. [3.2] H. Megaw, W.B. Saunders, Philadelphia, “Crystal Structures,” (1973) 231. [3.3] V. M. Ferreir, F. Azough, I. L. Baptista, “Magnesium titanate microwave dielectric ceramics,” Ferroelectrics, 133 (1992) 127-132. [3.4] B. W. Hakki, P. D. Coleman, ‘‘A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range,” IEEE Trans. Microwave Theory Technol., 8 (1960) 402-410. [3.5] Wheless, P. and Kajfez, D., “The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators,” IEEE MTT-S Digest, 85 (1985) 473-476. [3.6] P. H. Sun, T. Nakamura, Y. J. Shan, “Dielectric Behavior of (1-x)LaAlO3–xSrTiO3 Solid Solution System at Microwave Frequencies,” Jpn. J. Appl. Phys., 37 (1998) 5625-5629. [3.7] S. Kucheiko, J. W. Choi, H. J. Kim, “Microwave Dielectric Properties of CaTiO3-Ca(Al1/2Ta1/2)O3 Ceramics,” J. Am. Ceram. Soc., 79 (1996) 2739-2743. [3.8] W. S. Kim, T. H. Kim, “Microwave Dielectric Properties and Far Infrared Reflectivity Spectra of the (Zr0.8Sn0.2)TiO4 Ceramics with Additives,” Jpn. J. Appl. Phys., 37 (1998) 5367-5371. [4.1] X. J. Kuang, H. T. Xia and F. H. Liao, ”Doping Effects of Ta on Conductivity and Microwave Dielectric Loss of MgTiO3 Ceramics,” J. Am. Ceram. Soc., 90 [10] (2007) 3142-3147. [4.2] C. L. Huang, M. H. Weng and C. C. Wu, “Improved High Q Value of MgTiO3-CaTiO3 Microwave Dielectric Ceramics at Low Sintering Temperature,” Mater. Res. Bull., 36 [11] (2001) 2741-2750. [4.3] S. J. Penn, N. M. Alford, A. Templeton, “Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina,” J. Am. Ceram. Soc., 80 [7] (1997) 1885–1888 [5.1] M. Makimoto, and S. Yamashita, “Bandpass Filters Using Parallel Coupled Strip-line Stepped Impedance Resonators,” IEEE Trans. Microwave Theory Tech., 45 (1980) 141-143. [5.2] K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, “Microstrip lines and slotlines,” second edition., Boston: Artech House, 1996. [5.3] J. S. Hong, and M. J. Lancaster, “Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters,” IEEE Trans. Microwave Theory Tech., vol. 44 (1996) 2099-2109. [5.4] L. H. Hsieh, K. Chang, “Tunable Microstrip Bandpass Filters With Two Transmission Zeros,” IEEE Trans. Microwave Theory Tech, 51 (2003) 520-525. [5.5] T. Edwards, “Foundations for microstrip circuit design,” second edition., UK: Wiley, 1991. [5.6] Peter A. Rizzi., Microwave Engineering Passive Circuits, chap9, Prentice Hall, 1988. [5.7] I. Bahl, P. Bhartia, “ Microwave solid state circuit design,” chap6 John Wiley&Sons1988.
|