跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/02 21:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:余俊穎
研究生(外文):Jyun-Ying Yu
論文名稱:飛輪儲能系統於混合大型離岸式風場與海流場之功率潮流控制及穩定度分析研究
論文名稱(外文):Power Flow Control and Stability Analysis of a Hybrid Large-Scale Offshore Wind Farm and Marine-Current Farm Using a Flywheel Energy-Storage System
指導教授:王醴
指導教授(外文):Li Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:203
中文關鍵詞:離岸式風場穩定度功率潮流飛輪儲能系統海流場
外文關鍵詞:power flowstabilityflywheel energy-storage system (FESS)marine-current farmoffshore wind farm
相關次數:
  • 被引用被引用:3
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文係以聚集等效離岸式風場與海流場經由傳輸線與市電並聯運轉,並比較該系統含與不含飛輪儲能系統之穩態及動態模擬結果。本論文於三相平衡系統下利用交直軸等效電路模型,分別建立離岸式風場、海流場以及飛輪儲能系統等模型,並利用極點安置法針對飛輪儲能系統設計採用不同回授訊號之比例-積分-微分控制器。本論文於穩態特性方面,分析不同風速、流速及電網電壓等情況下對系統特性之影響,在動態模擬方面,完成了風速變動、轉矩干擾以及市電端三相短路故障等模擬結果。經由穩態及動態之模擬的結果得知,當所研究之系統中加入飛輪儲能系統及阻尼控制器後,可控制系統功率潮流以及有效改善系統於不同干擾下之穩定度特性。
Both steady-state and dynamic analysis results of an equivalent aggregated hybrid offshore wind farm and marine-current farm connected to utility grid through a transmission line are presented in this thesis. A flywheel energy-storage system (FESS) connected to the common AC bus of the studied system is proposed to control the power flow and enhance stability. The q-d axis equivalent-circuit model is developed to establish the models for offshore wind farm, marine-current farm, and the FESS under three-phase balanced loading conditions. A proportional-integral- derivative (PID) type damping controller using different feedback signals is designed for the FESS using pole-assignment approach based on modal control theory. Steady-state characteristics of this studied system under different values of wind speed, marine-current speed, grid voltage, etc. are examined. Dynamic simulations of the studied system subject to various values of wind speed, torque disturbance, etc. as well as a three-phase fault are also carried out. It can be concluded from the simulation results that the proposed FESS joined with the designed PID damping controller can effectively control the power flow and improve the stability of the studied system under various disturbance conditions.
中文摘要 I
英文摘要 II
致謝 IV
目錄 V
表目錄 IX
圖目錄 XII
符號說明 XVI
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 2
1-3相關文獻回顧 2
1-4 本論文貢獻 9
1-5 研究內容概述 10
第二章 系統數學模型 12
2-1 前言 12
2-2 風之數學模型 13
2-4 風場雙饋式感應發電機之數學模型 19
2-5聚集等效海流渦輪機之數學模型與海流數學模型 24
2-6 海流場鼠籠式轉子感應發電機之數學模型 27
2-7 旋角控制之數學模型 29
2-8 飛輪儲能系統之數學模型 31
第三章 利用極點安置法設計控制器 40
3-1 前言 40
3-2 控制系統之模型 40
3-3 極點安置法設計PID控制器 43
3-4靈敏度分析 48
第四章 市電並聯型聚集等效風場與海流場結合飛輪儲能系統之穩態分析 53
4-1 前言 53
4-2 風速與流速改變之穩態分析 53
4-3 市電端傳輸線長度改變之穩態分析 72
4-4 市電電壓改變之穩態分析 85
4-5 海流場電容值改變之穩態分析 97
4-6 本地負載電阻改變之穩態分析 109
4-7 市電端傳輸線X/R改變之穩態分析 121
第五章 市電並聯型聚集等效風場與海流場之動態分析 134
5-1 前言 134
5-2 風速變動之動態分析 134
5-2-1 飛輪儲能系統採用Pt回授訊號之PID控制器時風速變動之動態分析 135
5-2-2 飛輪儲能系統採用vbus回授訊號之PID控制器時風速變動之動態分析 142
5-2-3 含及不含PID控制器與不同控制器下風速變動之動態分析 148
5-3 聚集等效離岸式風場發生轉矩干擾之動態分析 150
5-3-1 飛輪儲能系統採用Pt回授之PID控制器於風場發生轉矩干擾之動態分析 150
5-3-2 飛輪儲能系統採用vbus回授之PID控制器於風場發生轉矩干擾之動態分析 156
5-3-3 含及不含PID控制器與不同控制器風場發生轉矩干擾之分析 161
5-4 本地負載變動之動態分析 163
5-4-1 飛輪儲能系統採用Pt回授之PID控制器時負載變動之動態分析 163
5-4-2 飛輪儲能系統採用vbus回授之PID控制器於負載變動之動態分析 170
5-4-3 含及不含PID控制器與不同控制器時本地負載變化之動態分析 176
5-5 海流場電容值改變時之動態分析 178
5-6 市電端三相短路故障之動態分析 183
5-7 海流場切離之動態分析 189
第六章 結論與未來研究方向 195
6-1 結論 195
6-2 未來研究方向 197
參考文獻 198
參考文獻
[1]http://www.epochtimes.com/b5/7/9/7/n1827012.htm 2009年5月20日。
[2]蘇達貞,科學發展月刊383期,2009年5月20日。http://203.145.193.110/NSC_INDEX/Journal/EJ0001/9311/9311-04.pdf。
[3]徐泊樺與顏志偉,物理雙月刊廿九卷三期,2009年5月20日。http://psroc.phys.ntu.edu.tw/bimonth/download.php?d=1&cpid=157&did=10。
[4]J. G. Slootweg and W. L. Kling, “Aggregated modeling of wind parks in power system,” in Proc. IEEE Power Tech conference, June 23-26, 2003.
[5]H.-S. Ko, G.-G. Yoon, and W.-P. Hong, “Active use of DFIG-based variable-speed wind-turbine for voltage regulation at a remote location,” IEEE Trans. Power Systems, vol. 22, no. 4, pp. 1916-1925, November 2007.
[6]F. Wu, X.-P. Zhang, K. Godfrey, and P. Ju, “Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator,” IET Generation, Transmission, and Distribution, vol. 1, no. 5, pp. 751-760, September 2007.
[7]D. Aguglia, P. Viarouge, R. Wamkeue, and J. Cros, “Analytical determination of steady-state converter control laws for wind turbines equipped with doubly fed induction generators,” IET Renewable Power Generation, vol. 2, no. 1, pp. 16-25, 2008.
[8]J. Zhang, Z. Chen, L. Cai, and Y. Zhao, “Flywheel energy storage system design for distribution network,” in Proc. IEEE Power Engineering Society Winter Meeting, vol. 4, pp. 2619-2623, January 23-27, 2000.
[9]R. Hebner, J. Beno, and A. Walls, “Flywheel batteries come around again,” IEEE Spectrum, vol. 39, no. 4, pp. 46-51, April 2002.
[10]C. Chompoo-inwai, W.-J. Lee, P. Fuangfoo, M. Williams, and J. R. Liao, “System impact study for the interconnection of wind generation and utility system,” IEEE Trans. Industry Applications, vo1. 41, no. 1, pp. 163-168, February 2005.
[11]L. Myers and A. S. Bahaj, “Simulated electrical power potential harnessed by marine current turbine arrays in the Alderney Race,” Renewable Energy, vol. 30, no. 11, pp. 1713-1731, September 2005.
[12]C. Chompoo-inwai, C. Yingvivatanapong, K. Methaprayoon, and W.-J. Lee, “Reactive compensation techniques to improve the ride-through capability of wind turbine during disturbance,” IEEE Trans. Industry Applications, vol. 41, no. 3, pp. 666-672, May/June 2005.
[13]I. G. Bryden and S. J. Couch, “ME1-Marine energy extraction: Tidal resource analysis,” Renewable Energy, vol. 31, no. 2, pp. 133-139, February 2006.
[14]R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher, and P. Wheeler, “Power smoothing using a flywheel driven by a switched reluctance machine,” IEEE Trans. Industrial Electronics, vol. 53, no. 4, pp. 1086-1093, June 2006.
[15]R. de Andrade, G. G. Sotelo, A. C. Ferreira, L. G. B. Rolim, J. L. da Silva Neto, R. M. Stephan, W. I. Suemitsu, and R. Nicolsky, “Flywheel energy storage system description and tests,” IEEE Trans. Applied Superconductivity, vol. 17, no. 2, pp. 2154-2157, June 2007.
[16]A. P. Grilo, A. d. A. Mota, L. T. M. Mota, and W. Freitas, “An analytical method for analysis of large-disturbance stability of induction generators,” IEEE Trans. Power Systems, vol. 22, no. 4, pp. 1861-1868, November 2007.
[17]D. Andersson, A. Petersson, E. Agneholm, and D. Karlsson, “Kriegers Flake 640 MW off-shore wind power grid connection - A real project case study,” IEEE Trans. Energy Conversion, vo1. 22, no. 1, pp. 79-85, March 2007.
[18]R. F. Thelen, A. Gattozzi, D. Wardell, and A. Williams, “A 2-MW motor and ARCP drive for high-speed flywheel,” in Proc. IEEE Applied Power Electronics Conference, pp. 1690-1694, February /March 2007.
[19]A. S. Bahaj, W. M. J. Batten, and G. Mccann, “Experimental verifications of numerical predictions for the hydrodynamic performance of horizontal axis marine current turbines,” Renewable Energy, vol. 32, no. 15, pp. 2479-2490, December 2007.
[20]W. M. J. Batten, A. S. Bahaj, A. F. Molland, and J. R. Chaplin, “The prediction of the hydrodynamic performance of marine current turbines,” Renewable Energy, vol. 33, no. 5, pp. 1085-1096, May 2008.
[21]S.-S. Chen, L. Wang, W.-J. Lee, and Z. Chen, “Power flow control and damping enhancement of large wind farm using a superconducting magnetic energy storage unit,” IET Renewable Power Generation, vol. 3, no. 1, pp. 23-38, 2009.
[22]劉書瑋,市電併聯型風力感應發電機之研究,國立成功大學電機工程學系碩士論文,2005年6月。
[23]P. C. Krause, Analysis of Electric Machinery, New York: McGraw-Hill, 1986.
[24]黃偉,虛功補償元件應用於風場之特性分析,國立成功大學電機工程學系碩士論文,2007年6月。
[25]林俊宏,含旋角控制器之市電併聯型風力感應發電機之特性分析,國立成功大學電機工程學系碩士論文,2006年6月。
[26]盧志榮,飛輪儲能系統於風力發電系統之功率潮流控制及穩定度分析研究,國立成功大學電機工程學系碩士論文,2008年6月。
[27]P. Kundur, Power System Stability and Control, New York: McGraw-Hill, 1994.
[28]P. M. Anderson and A. A. Fouad, Power System Control and Stability, Iowa: The Iowa State University Press, Ames, 1977.
[29]劉建宏,海流發電系統之特性分析,國立成功大學電機工程學系碩士論文,2008年6月。
[30]陳翔雄,利用超導儲能系統於大型離岸式風場之動態穩定度改善研究,國立成功大學電機工程學系博士論文,2009年3月。
[31]K. Dartawan and C. S. Pierre, “Proposed methods to determine fault point X/R ratio for breaker evaluation,” IEEE Trans. Industry Applicatons, vol. 40, no. 4, pp. 941-949, July/August 2004.
[32]A. Reidy and R. Watson, “Comparison of VSC based HVDC and HVAC interconnections to a large offshore wind farm,” in Proc. IEEE Power Engineering Society General Meeting, vol. 1, pp. 1-8, June 12-16, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊