跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/26 03:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陸宇銓
研究生(外文):Yu-Chuan Lu
論文名稱:應用於電動代步車之永磁無刷馬達其弱磁控制及性能提升之探討
論文名稱(外文):Study on Flux-Weakening Control and Performance Improvement of Permanent Magnet Brushless Motors for Mobility Scooters
指導教授:鄭銘揚鄭銘揚引用關係
指導教授(外文):Ming-Yang Cheng
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:103
中文關鍵詞:永磁無刷馬達反電動勢波形傅立葉分析弱磁控制
外文關鍵詞:Permanent magnet brushless motorsback-emf waveformFourier analysisflux-weakening control
相關次數:
  • 被引用被引用:7
  • 點閱點閱:775
  • 評分評分:
  • 下載下載:163
  • 收藏至我的研究室書目清單書目收藏:0
就目前市面上之電動代步車而言,其動力源大部分仍使用直流有刷馬達。此類馬達因具有電刷、整流子以及定子永久磁鐵之機械結構,故其天生存在著大起動轉矩及控制簡單之優點。然而,這樣的機械式換相往往帶來了低功率密度、低可靠度以及散熱不易之問題。反觀永磁無刷馬達於結構上散熱良好,且效率高、不需定時維修,在電動代步車應用上具有高度潛力。因此,本論文將探討具梯形波與弦波反電動勢之永磁無刷馬達於方波、弦波電流驅動下之性能表現,並以低解析度之霍爾感測元件實現弦波電流驅動,達到低成本驅動器之目的。最後,針對各驅動策略之效率及最高轉速限制進行傅立葉分析及實驗驗證,結果發現使用方波、弦波之混合操作模式,可發揮永磁無刷馬達於不同轉速下之最大效能。因此本論文規劃了一套能即時切換方波與弦波電流之驅動方式,以提升電動代步車高速與低速下之穩態性能。
Nowadays, most mobility scooters are equipped with the DC brush motor. This type of motor has mechanical structures such as stator permanent magnets, brush, and a commutator. Therefore, it has large start-up torque and is easy to control. However, this kind of mechanical commutation often leads to drawbacks such as low power density, low reliability, and difficulties to disburse heat. In contrast with the DC brush motor, the permanent magnet brushless motor (PMBLM) has high efficiency and does not need regular maintenance. Hence, PMBLM has great potential in becoming the power source for mobility scooters. In this thesis, the performance of the PMBLM with ideal trapezoidal and sinusoidal back-emf waveforms under rectangular and sinusoidal current drives is evaluated. To reduce the cost, low-resolution Hall sensors are used to implement the sinusoidal current drives. Both the Fourier analysis and experimental results indicate that the proposed hybrid rectangular and sinusoidal current operations can indeed improve the performance of the permanent magnet brushless motors under various driving strategies.
摘 要 I
Abstract II
誌 謝 IV
目錄 V
圖目錄 IX
表目錄 XV
符號表 XVI
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 3
1.3 研究目的與方法 4
1.4 論文架構 5
第二章 永磁式無刷馬達之驅動原理及方式 6
2.1 永磁式直流馬達基本介紹 6
2.2 永磁式無刷馬達基本介紹 7
2.3 永磁式無刷馬達之驅動方法 9
2.3.1 六步方波120°導通模式 10
2.3.2 六步方波180°導通模式 12
2.3.3 弦波脈波寬度調變模式 14
2.3.4 空間向量脈波寬度調變模式 15
2.4 永磁同步馬達之數學模型與推導 19
2.4.1 三相定子座標下之數學建模 19
2.4.1 旋轉座標下的數學模型 23
第三章 驅動電流波形與效率之分析 26
3.1 馬達效率與功率損失 26
3.2 反電動勢及相電流波形之傅立葉分析 28
3.3 無刷直流馬達在方波、弦波電流驅動下之效率分析 36
3.4 永磁同步馬達在方波、弦波電流驅動下之效率分析 38
3.5 具60°平頂區之梯形波反電動勢無刷直流馬達之效率分析 39
3.6 綜合比較 41
第四章 永磁無刷馬達之高速限制與弱磁控制 44
4.1 基礎知識 44
4.2 各驅動方式之直流電壓源利用率分析 46
4.2.1 六步方波120°導通模式 46
4.2.2 六步方波180°導通模式 48
4.2.3 弦波脈寬調變模式 49
4.2.4 空間向量調變模式 50
4.2.5 綜合比較 50
4.3兩軸理論下的弱磁控制 51
4.3.1 操作區域定義 52
4.3.2 定轉矩控制 53
4.3.3 定功率控制 54
4.4 相位超前控制 58
4.4.1 相位超前控制之限制 60
第五章 實驗架構與結果 63
5.1 實驗系統架構 63
5.1.1 馬達驅動電路 64
5.1.2 dsPIC30F4011微控制器 65
5.1.3永磁無刷馬達 66
5.2 軟體程式架構 68
5.2.1 以霍爾感測器回授位置資訊之弦波脈寬調變 69
5.2.2 弦波電流相位補償與超前 73
5.2.3 方波電流相位超前 75
5.3 實驗結果 77
5.3.1 實驗一:無刷直流馬達與永磁同步馬達於各驅動模式下之轉速表現 77
5.3.1 實驗二:無刷直流馬達與永磁同步馬達於方波、弦波驅動之效率比較 81
5.3.2 實驗三:相位超前角控制 87
5.3.3 結果與討論 91
第六章 結論與未來研究建議 95
6.1 結論 95
6.2 未來研究建議 96
[1]P. Pillay, and R. Krishnan, “Application characteristics of permanent magnet synchronous and brushless dc motors for servo drives,” IEEE Transactions on Industry Applications, vol. 27, pp. 986-996, 1991.
[2]Z. Q. Zhu, J. X. Shen, and D. Howe, “Flux-weakening characteristics of trapezoidal back-emf machines in brushless dc and ac modes,” in Proceedings of the IEEE Power Electronics and Motion Control Conference, Shanghai, China, 2006, pp. 1-5.
[3]Y. F. Shi, Z. Q. Zhu, and D. Howe, “Torque-speed characteristics of interior-magnet machines in brushless ac and dc modes, with particular reference to their flux-weakening performance,” in Proceedings of the IEEE Power Electronics and Motion Control Conference, Shanghai, China, 2006, pp. 1-5.
[4]魏道炎,『直流無刷馬達驅動技術之研究,』 碩士論文,國立台灣大學機械工程學系,2002。
[5]T. M. Jahns, G. B. Kliman, and T. W. Neumann, “Interior Permanent-Magnet Synchronous Motors for Adjustable-Speed Drives,” IEEE Transactions on Industry Applications, vol. IA-22, pp. 738-747, 1986.
[6]T. M. Jahns, “Flux-weakening regime operation of an interior permanent-magnet synchronous motor drive,” IEEE Transactions on Industry Applications, vol. IA-23, pp. 681-689, 1987.
[7]S. Morimoto, M. Sanada, and Y. Takeda, “Design and control system of inverter-driven permanent magnet synchronous motors for high torque operation,” IEEE Transactions on Industry Applications, vol. 39, no. 3, pp. 792-801, 2003.
[8]S. Morimoto, M. Sanada, and Y. Takeda, “Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator,” IEEE Transactions on Industry Applications, vol. 39, no. 3, pp. 792-801, 1994.
[9]T. M. Jahns, “Torque production in permanent-magnet synchronous motor drives with rectangular current excitation,” IEEE Transactions on Industry Applications, vol. IA-20, pp. 803-813, 1984.
[10]R. C. Becerra, and M. Ehsani, “High-speed torque control of brushless permanent magnet motors,” IEEE Transactions on Industrial Electronics, vol. 35, pp. 402-406, 1988.
[11]S. K. Safi, P. P. Acarnley, and A. G. Jack, “Analysis and simulation of the high-speed torque performance of brushless dc motor drives” IEE Proceedings, Electric Power Application, vol. 142, no. 3, pp. 191-200, 1995.
[12]C. C. Chan, J. Z. Jiang, W. Xia, and K.T. Chau, “Novel wide range speed control of permanent magnet brushless motor drives,” IEEE Transactions on Power Electronics, vol. 10, pp. 539-546, 1995.
[13]J. S. Lawler, J. M. Bailey, J. W. McKeever, and J. Pinto, “Limitations of the conventional phase advance method for constant power operation of the brushless dc motor,” in Proceedings of the IEEE SoutheastCon’02, vol. SEC-118, Columbia, South Carolina, USA, 2002, pp. 174-180.
[14]B. M. Nquyen, and M. C. Ta, “Phase advance approach to expand the speed range of brushless dc motor,” in Proceedings of the IEEE Power Electronics and Drives Systems Conference, Bangkok, Thailand, 2007, pp. 1255-1262.
[15]N. A. Patil, and J. S. Lawler, “Experimental verification of conventional phase advancement method for surface permanent magnet motor with fractional-slot concentrated windings,” in Proceedings of the IEEE Southeastcon, Huntsville, Alabama, USA, 2008, pp. 474-479.
[16]A. M. EL-Refaie, T. M. Jahns, P. J. McCleer, and J. W. McKeever, “Experimental verification of optimal flux weakening in surface PM machines using concentrated windings,” IEEE Transactions on Industry Applications, vol. 42, no. 2, pp. 443-453, 2006.
[17]J. S. Lawler, J. M. Bailey, J. W. McKeever, and J. Pinto, “Extending the constant power speed range of the brushless dc motor through dual-mode inverter control,” IEEE Transactions on Power Electronics, vol. 19, no. 3, pp. 783-793, 2004.
[18]P. Pillay, and R. Krishnan, “Modeling, simulation, and analysis of permanent-magnet motor drives, part I: the permanent-magnet synchronous motor drive,” IEEE Transactions on Industrial Electronics, vol. 25, pp. 279-279, 1989.
[19]S. Morimoto, M. Sanada, and Y. Takeda, “High performance current sensorless drive for PMSM and SynRM with only low resolution position sensor,” IEEE Transactions on Industry Applications, vol. 39, no. 3, pp. 792-801, 2003.
[20]F. G. Capponi, G. D. Donato, and L. D. Ferraro, “Brushless AC drive using an axial flux synchronous PM motor with low resolution position sensors,” in Proceedings of the IEEE Power Electronics Specialists Conference, vol. 3, 2004, pp. 2287-2292.
[21]F. C. Lee, “Energy efficient power conversion architecture and management for IT industries,”Virginia Polytechnic Institute and State University, USA, 2008.
[22]羅銘翔,『永磁同步馬達調速驅動系統於跑步機之研製,』 碩士論文,國立成功大學電機工程學系,2007。
[23]劉子瑜,『基於弦波電流驅動於永磁同步馬達電流迴路控制之研究,』 碩士論文,國立成功大學電機工程學系,2009。
[24]S. J. Chapman, Electric machinery fundamentals, McGraw-Hill companies, Inc., 2005.
[25] 孫清華,『最新無刷直流馬達』,全華圖書股份有限公司,2001。
[26]R. Carlson, M. Lajoie-Mazenc, and J. C. d. S. Fagundes, “Analysis of torque ripple due to phase commutation in brushless dc machines,” IEEE Transaction on Industry Applications, vol. 28, pp. 632-638, 1992.
[27]D. Hanselman, Brushless permanent magnet motor design, The Writers’ Collective, USA, 2003.
[28]S. Ruangsinchaiwanich, Z. Q. Zhu, and D. Howe, “Influence of magnet shape on cogging torque and back-emf waveform in permanent magnet machines,” in Proceedings of the IEEE Electrical Machines and Systems Conference, Vol. 1, 2005, pp. 284-289.
[29]C. L. Chu, M. C. Tsai, and H. Y. Chen. “Torque control of brushless dc motors applied to electric vehicles,” in Proceedings of the IEEE Electric Machines and Drives Conference, Cambridge, Massachusetts, USA, 2001, pp. 82-87.
[30]陳瑞霖,『永磁同步電動機轉軸角度估測及驅動系統的研製,』 碩士論文,國立台灣科技大學電機工程系,2006。
[31]A. M. EL-Refaie, D. W. Novotny, and T. M. Jahns, “A simple model for flux weakening in surface PM synchronous machines using back-to-back thyristors,” IEEE Power Electronics Letters, vol. 2, pp. 54-57, 2004.
[32]R. H. Brown, S. C. Schneider, and M. G. Mulligan, “Analysis of algorithms for velocity estimation from discrete position versus time data,” IEEE Transactions on Industrial Electronics, vol. 39, pp. 11-19, 1992.
[33]H. Zeroug, D. Holliday, D. Grant, and N. Dahnoun, “Perfomance prediction and field weakening simulation of a brushless DC motor,” IEE Proceedings, Power Electronics and Variable Speed Drives, no. 475, pp. 321-326, 2000.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊