|
[1] A. Matsuzawa, “Mixed signal SoC Era,” IEICE Trans. Electron., pp. 867-877, vol. E87-C, no. 6, Jun. 2004. [2] W. Kester, “Which ADC architecture is right for your application?,” http://www.analog.com/ [3] International Technology Roadmap for Semiconductors 2007 Edition System Driver [4] J. Li and U. Moon, “A 1.8-V 67-mW 10-bit 100-MS/s pipelined ADC using time-shifted CDS technique,” IEEE J. Solid-State Circuits, vol. 39, pp. 1468-1476, Sep. 2004. [5] G. Ahn, P.K. Hanumolu, M. Kim, S. Takeuchi, T. Sugimoto, K. Hamashita, K. Takasuka, G. Temes, and U. Moon, “12b 10MS/s pipelined ADC using reference scaling,” Symposium on VLSI Circuits, Digest of Technical Papers, 2006. [6] H.Y. Lee and S.I. Liu, “An 8-bit 140MS/s pipelined ADC using folded sample-and-hold stage,” International Conference on Electron Devices and Solid-State Circuits, Dec. 2007, pp. 357-360. [7] S.Q. Malik and R.L. Geiger, “Simultaneous capacitor sharing and scaling for reduced power in pipeline ADCs,” IEEE Midwest Symposium on Circuits and Systems, pp. 1015-1018, Aug. 2005. [8] M. Yoshioka, M. Kudo, K. Gotho, and Y. Watanabe, “A 10b 125 MS/s 40 mW pipelined ADC in 0.18 um CMOS,” International Solid-State Circuits Conference Dig. Tech. Papers, Feb. 2005, pp. 282–283. [9] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001. [10] K.L. Lee and R.G. Mayer, “Low-distortion switched-capacitor filter design techniques,” IEEE J. Solid-State Circuits, vol. 20, pp. 1103- 1113, Dec. 1985. [11] W. Yang, D. Kelly, I. Mehr, M.T. Sayuk, and L. Singer, “A 3-V 340-mW 14-b 75-Msample/s CMOS ADC with 85-dB SFDR at Nyquist input,” IEEE J. Solid-State Circuits, vol. 36, pp. 1931-1936, Dec. 2001. [12] I. Mehr and L. Singer, “A 55-mW, 10-bit, 40-Msample/s Nyquist-rate CMOS ADC,” IEEE J. Solid-State Circuits, vol. 35, pp. 318-325, Mar. 2000. [13] B.M. Min, P. Kim, F.W. Bowman, III, D.M. Boisvert, and A.J. Aude “A 69-mW 10-bit 80-MSample/s pipelined CMOS ADC” IEEE J. Solid-State Circuits, vol. 38, pp. 2031-2039, Dec. 2003. [14] L. Sumanen, M. Waltari, and K. Halonen, “A mismatch insensitive CMOS dynamic comparator for pipeline A/D converters,” IEEE International Conference on Electronics, Circuits, and Systems, Dec. 2000, pp. 32-35. [15] T.B. Cho and P.R. Gray, “A 10 b, 20 Msample/s, 35mW pipeline A/D Converter,” IEEE J. Solid-State Circuits, vol. 30, pp. 166-172, Mar.1995. [16] M.J.M. Pelgrom, A.C.J. Duinmaijer, and A.P.G. Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, pp. 1433-1439, Oct.1989. [17] V. Katyal, R.L. Geiger, and D.J. Chen, “A new high precision low offset dynamic comparator for high resolution high speed ADCs,” IEEE Asia Pacific Conference on Circuits and Systems, Dec. 2006, pp. 5-8. [18] L. Sumanen, M. Waltari, V. Hakkarainen, and K. Halonen, “CMOS dynamic comparators for pipeline A/D converters” IEEE International Symposium on Circuits and Systems, 2002, vol. 5, pp. V-157- V-160. [19] P.M. Figueiredo and J.C. Vital, “Kickback noise reduction techniques for CMOS latched comparators,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, pp. 541-545, Jul. 2006. [20] E. Alon, EE240 Course Notes, UC Berkeley, USA [21] J. Shyu, G.C. Temes, and K. Yao, “Random errors in MOS capacitors,” IEEE J. Solid-State Circuits, vol. SC-17, pp. 1070–1076, Dec. 1982. [22] A.J. Annema, B. Nauta, R. van Langevelde, and H. Tuinhout, “Analog circuits in ultra-deep-submicron CMOS,” IEEE J. Solid-State Circuits, vol. 40, pp. 132–143, Jan. 2005. [23] H. Khorramabadi, EE247 Course Notes, UC Berkeley, USA [24] B.S. Song, M.F. Tompsett, and K.R. Lakshmikumar, “A 12-bit 1-Msample/s capacitor error-averaging pipelined A/D converter,” IEEE J. Solid-State Circuits, vol. 23, pp. 1324–1333, Dec. 1988. [25] Y.M. Lin, B. Kim, and P.R. Gray, “A 13-b 2.5-MHz self-calibrated pipelined A/D converter in 3-μm CMOS,” IEEE J. Solid-State Circuits, vol. 26, pp. 628–636, Apr. 1991. [26] P.C. Yu and H.S. Lee “A 2.5 V 12 b 5 MSample/s pipelined CMOS ADC,” IEEE J. Solid-State Circuits, vol. 31, pp. 1854–1861, Dec. 1996. [27] U. Chilakapari and T.S. Fiez, “Effect of switch resistance on the SC integrator settling time,” IEEE Trans. Circuits Syst. II, vol. 46, pp. 810–816, Jun. 1999. [28] B.K. Thandri and J. Silva-Martinez, “A robust feedforward compensation scheme for multistage operational transconductance amplifiers with no Miller capacitors,” IEEE J. Solid-State Circuits, vol. 38, pp. 237- 243, Feb. 2003. [29] H.C. Yang and D.J. Allstot, “Considerations for fast settling operational amplifiers,” IEEE Trans. Circuits Syst., vol. 37, pp. 326–334, Mar. 1990. [30] M. Miyahara and A. Matsuzawa, “The effects of switch resistances on pipelined ADC performances and the optimization for the settling time,” IEICE Trans. Electron., vol. E90-C, pp. 1165-1171, Jun. 2007. [31] P. Gray, P.J. Hurst, S.H. Lewis, and R.G. Meyer, Analysis and Design of Analog Integrated Circuits (4th Edition), John-Wiley&Sons, 2001. [32] R. Gregorian and G.C. Temes, Analog MOS integrated circuits for signal processing, New York: Wiley, 1986. [33] R. Schreier, J. Silva, J. Steensgaard, and G.C. Temes, “Design-oriented estimation of thermal noise in switched-capacitor circuits,” IEEE Trans. Circuits Syst. I: Regular papers, vol. 52, pp. 2358–2368, Nov. 2005. [34] J.F. Lin, “A high speed pipelined A/D converter using modified time-shifted CDS technique,” Master Thesis, National Cheng Kung University, 2005. [35] S.H. Lewis and P.R. Gray, “A pipelined 5-Msample/s 9-bit analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. SC-22, pp. 954 - 261, Dec. 1987. [36] S.H. Lewis, H.S. Fetterman, G.F. Gross, Jr., R. Ramachandran, and T.R. Viswanathan, “A 10-b 20-Msample/s analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 27, pp. 351 - 358, Mar. 1992. [37] S.H. Lewis, H.S. Fetterman, G.F. Gross, Jr., R. Ramachandran, and T.R. Viswanathan, “A pipelined 9-stage video-rate analog-to-digital converter,” IEEE Custom Integrated Circuits Conference, May 1911, pp. 26.4.1-26.4.4. [38] S. Jiang, M. A. Do, K. S. Yeo, and W. M. Lim, “An 8-bit 200-MSample/s pipelined ADC with mixed-mode front-end S/H circuit,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 6, pp. 1430-1440, Jul. 2008. [39] T. Ueno, T. Ito, D. Kurose, T. Yamaji, and T. Itakura, “A 1.2 V 24 mW/ch 10 bit 80 MSample/s pipelined A/D Converters,” IEEE Custom Integrated Circuits Conference, Sep. 2006, pp. 501-504. [40] Y. Chiu, P.R. Gray, and B. Nikolic, “A 14-b 12-MS/s CMOS pipeline ADC with over 100-dB SFDR,” IEEE J. Solid-State Circuits, vol. 39, pp. 2139-2151, Dec. 2004. [41] D. Miyazaki, S. Kawahito, and M. Furuta, “A 10-b 30-MS/s low-power pipelined CMOS A/D converter using a pseudo-differential architecture,” IEEE J. Solid-State Circuits, vol. 38, pp. 369-373, Feb. 2003. [42] K. Nagaraj, H.S. Fetterman, J. Anidjar, S.H. Lewis, and R.G. Renninger “A 250-mW, 8-b, 52-Msamples/s parallel-pipelined A/D converter with reduced number of amplifiers” IEEE J. Solid-State Circuits, vol.32, pp. 312-320, Mar. 1997. [43] D. Kurose, T. Ito, T. Ueno, T. Yamaji, and T. Itakura, “55-mW 200-MSPS 10-bit pipeline ADCs for wireless receivers” IEEE J. Solid-State Circuits, vol.41, pp. 1589-1595, Jul. 2006. [44] J. Li, R. Leboeuf, M. Courcy, and G. Manganaro, “A 1.8V 10b 210MS/s CMOS Pipelined ADC Featuring 86dB SFDR without Calibration” IEEE Custom Integrated Circuits Conference, Sep. 2007, pp. 317-320. [45] S.C. Lee, Y.D. Jeon, K.D. Kim, J.K. Kwon, J. Kim, J.W. Moon, and W. Lee, “A 10b 205MS/s 1mm2 90nm CMOS Pipeline ADC for Flat-Panel Display Applications” International Solid-State Circuits Conference Dig. Tech. Papers, Feb. 2007, pp. 458-615.
|