跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 04:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邵姿菁
研究生(外文):Tz-Jing Shau
論文名稱:使用高頻寬取樣保持放大器的高速管路式類比數位轉換器
論文名稱(外文):A High-Speed Pipelined Analog-to-Digital Converter Using Wide-band Sample-and-Hold Amplifier
指導教授:張順志
指導教授(外文):Soon-Jyh Chang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:74
中文關鍵詞:管路式高頻寬取樣保持放大器類比數位轉換器
外文關鍵詞:ADCpipelinedWide-band Sample-and-Hold Amplifier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:355
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
隨著製程技術的演進,基於可靠度的考量,低電壓操作已經變成未來電路的趨勢。然而電路的供應電壓不斷的下降的同時,將會減少訊號的動態範圍。若欲維持一定的動態範圍,必須設法抑制雜訊並降低訊號失真量,如此將間接增加類比電路的功率消耗。在傳統管路式類比數位轉換器的設計中,需要一個極高增益的運算放大器來確保訊號處理的準確性,而製程的限制將使設計這樣的運算放大器面臨極大的困難。本論文提出一個高頻寬取樣保持放大器來克服實現高增益運算放大器所帶來的困難,並且同時提高對於輸入訊號振幅的容忍度。運用所提出的電路技巧,本論文採用台積電0.18微米互補式金氧半製程來設計一個10位元每秒取樣2億次的管路式類比數位轉換器。
With the advance of deep submicron technology, the low supply voltage will become the trend of circuit development due to the device’s reliability issues. However, the signal dynamic range will be decreased because of the reduction of supply voltage. In order to maintain the dynamic range, the noise and signal distortion must be suppressed. By this way, it will indirectly increase the power consumption of analog circuits. Especially, a high-gain op-amp is necessitated to guarantee the required accuracy in the conventional pipelined ADC. However, due to the process limitations, it is difficult to implement such a high-gain op-amp. The penalty of additional power dissipation must be paid to implement this op-amp. In this thesis, a technique called as wide-band folded SHA is proposed to relax the requirement of high-gain op-amp and increase the tolerable input swing in a pipelined ADC. A 10-bit 200 MS/s pipelined ADC with the proposed wide-band folded SHA has been designed with the TSMC 0.18 �慆 CMOS 1P6M process to demonstrate the effectiveness of the proposed SHA.
Chapter Introduction……………………………………………1
1.1 Background……………………………………………………1
1.2 Motivation……………………………………………………3
1.3 Existing Methods……………………………………………3
1.4 Proposed Approaches………………………………………4
1.5 Thesis Organization………………………………………4
Chapter 2 An Introduction to Pipelined ADCs………………5
2.1 Pipelined ADC Fundamentals-Concept and Operation……5
2.2 Building Blocks in Pipelined ADC…………………………9
2.2.1 Front-End Sample and Hold Amplifier (SHA)…………9
2.2.2 Pipelined Stage……………………………………………12
2.2.2.1 Sub-ADC……………………………………………………12
2.2.2.2 Multiplying Digital to Analog Converter…………17
Chapter 3 Non-ideal Effects and Existing Performance Enhancement Techniques in Pipelined ADCs………………… 20
3.1 Non-ideal Effects and Stage Accuracy Requirement in Pipelined ADCs……………………………………………………20
3.1.1 Device Mismatch……………………………………………21
3.1.2 Finite Gain, Bandwidth and Slew Rate of Inter-Stage Amplifier……………………………………………………………23
3.1.3 Non-Zero and Signal-Dependent Switch Resistance…27
3.1.4 Electronic Noise…………………………………………29
3.2 Existing Performance Enhancement Techniques in Pipelined ADCs……………………………………………………35
3.2.1 Digital Correction and Redundancy Techniques……………………………………………………………35
3.2.2 SHA-less Architecture and Folded SHA…………………39
3.2.3 Pseudo-Differential Op-Amp and Common-Mode Stabilization Scheme………………………………………………45
Chapter 4 A 10-bit 200MS/s Pipelined ADC……………………49
4.1 Employed Design Techniques…………………………………49
4.1.1 Op-amp Sharing………………………………………………49
4.1.2 Folded SHA with Capacitor Flip-around Technique……………………………………………………………51
4.1.3 Digital Correction Circuit………………………………54
4.2 Building Blocks Design………………………………………56
4.2.1 Pseudo-differential Class-AB Gain-boosted Operational Amplifier and Integrator-based Common-mode Stabilization Technique…………………………………………56
4.2.2 Comparator……………………………………………………57
4.3 Derivation of Component Specifications…………………59
4.3.1 The Required Minimum Capacitor Size…………………59
4.3.2 Specification of the Op-amp………………………………61
4.4 Simulation Result………………………………………………63
Chapter 5 Conclusion and Future Work…………………………68
5.1 Conclusion………………………………………………………68
5.2 Future Work……………………………………………………69
Reference………………………………………………………………70
[1] A. Matsuzawa, “Mixed signal SoC Era,” IEICE Trans. Electron., pp. 867-877, vol. E87-C, no. 6, Jun. 2004.
[2] W. Kester, “Which ADC architecture is right for your application?,” http://www.analog.com/
[3] International Technology Roadmap for Semiconductors 2007 Edition System Driver
[4] J. Li and U. Moon, “A 1.8-V 67-mW 10-bit 100-MS/s pipelined ADC using time-shifted CDS technique,” IEEE J. Solid-State Circuits, vol. 39, pp. 1468-1476, Sep. 2004.
[5] G. Ahn, P.K. Hanumolu, M. Kim, S. Takeuchi, T. Sugimoto, K. Hamashita, K. Takasuka, G. Temes, and U. Moon, “12b 10MS/s pipelined ADC using reference scaling,” Symposium on VLSI Circuits, Digest of Technical Papers, 2006.
[6] H.Y. Lee and S.I. Liu, “An 8-bit 140MS/s pipelined ADC using folded sample-and-hold stage,” International Conference on Electron Devices and Solid-State Circuits, Dec. 2007, pp. 357-360.
[7] S.Q. Malik and R.L. Geiger, “Simultaneous capacitor sharing and scaling for reduced power in pipeline ADCs,” IEEE Midwest Symposium on Circuits and Systems, pp. 1015-1018, Aug. 2005.
[8] M. Yoshioka, M. Kudo, K. Gotho, and Y. Watanabe, “A 10b 125 MS/s 40 mW pipelined ADC in 0.18 um CMOS,” International Solid-State Circuits Conference Dig. Tech. Papers, Feb. 2005, pp. 282–283.
[9] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2001.
[10] K.L. Lee and R.G. Mayer, “Low-distortion switched-capacitor filter design techniques,” IEEE J. Solid-State Circuits, vol. 20, pp. 1103- 1113, Dec. 1985.
[11] W. Yang, D. Kelly, I. Mehr, M.T. Sayuk, and L. Singer, “A 3-V 340-mW 14-b 75-Msample/s CMOS ADC with 85-dB SFDR at Nyquist input,” IEEE J. Solid-State Circuits, vol. 36, pp. 1931-1936, Dec. 2001.
[12] I. Mehr and L. Singer, “A 55-mW, 10-bit, 40-Msample/s Nyquist-rate CMOS ADC,” IEEE J. Solid-State Circuits, vol. 35, pp. 318-325, Mar. 2000.
[13] B.M. Min, P. Kim, F.W. Bowman, III, D.M. Boisvert, and A.J. Aude “A 69-mW 10-bit 80-MSample/s pipelined CMOS ADC” IEEE J. Solid-State Circuits, vol. 38, pp. 2031-2039, Dec. 2003.
[14] L. Sumanen, M. Waltari, and K. Halonen, “A mismatch insensitive CMOS dynamic comparator for pipeline A/D converters,” IEEE International Conference on Electronics, Circuits, and Systems, Dec. 2000, pp. 32-35.
[15] T.B. Cho and P.R. Gray, “A 10 b, 20 Msample/s, 35mW pipeline A/D Converter,” IEEE J. Solid-State Circuits, vol. 30, pp. 166-172, Mar.1995.
[16] M.J.M. Pelgrom, A.C.J. Duinmaijer, and A.P.G. Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, pp. 1433-1439, Oct.1989.
[17] V. Katyal, R.L. Geiger, and D.J. Chen, “A new high precision low offset dynamic comparator for high resolution high speed ADCs,” IEEE Asia Pacific Conference on Circuits and Systems, Dec. 2006, pp. 5-8.
[18] L. Sumanen, M. Waltari, V. Hakkarainen, and K. Halonen, “CMOS dynamic comparators for pipeline A/D converters” IEEE International Symposium on Circuits and Systems, 2002, vol. 5, pp. V-157- V-160.
[19] P.M. Figueiredo and J.C. Vital, “Kickback noise reduction techniques for CMOS latched comparators,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, pp. 541-545, Jul. 2006.
[20] E. Alon, EE240 Course Notes, UC Berkeley, USA
[21] J. Shyu, G.C. Temes, and K. Yao, “Random errors in MOS capacitors,” IEEE J. Solid-State Circuits, vol. SC-17, pp. 1070–1076, Dec. 1982.
[22] A.J. Annema, B. Nauta, R. van Langevelde, and H. Tuinhout, “Analog circuits in ultra-deep-submicron CMOS,” IEEE J. Solid-State Circuits, vol. 40, pp. 132–143, Jan. 2005.
[23] H. Khorramabadi, EE247 Course Notes, UC Berkeley, USA
[24] B.S. Song, M.F. Tompsett, and K.R. Lakshmikumar, “A 12-bit 1-Msample/s capacitor error-averaging pipelined A/D converter,” IEEE J. Solid-State Circuits, vol. 23, pp. 1324–1333, Dec. 1988.
[25] Y.M. Lin, B. Kim, and P.R. Gray, “A 13-b 2.5-MHz self-calibrated pipelined A/D converter in 3-μm CMOS,” IEEE J. Solid-State Circuits, vol. 26, pp. 628–636, Apr. 1991.
[26] P.C. Yu and H.S. Lee “A 2.5 V 12 b 5 MSample/s pipelined CMOS ADC,” IEEE J. Solid-State Circuits, vol. 31, pp. 1854–1861, Dec. 1996.
[27] U. Chilakapari and T.S. Fiez, “Effect of switch resistance on the SC integrator settling time,” IEEE Trans. Circuits Syst. II, vol. 46, pp. 810–816, Jun. 1999.
[28] B.K. Thandri and J. Silva-Martinez, “A robust feedforward compensation scheme for multistage operational transconductance amplifiers with no Miller capacitors,” IEEE J. Solid-State Circuits, vol. 38, pp. 237- 243, Feb. 2003.
[29] H.C. Yang and D.J. Allstot, “Considerations for fast settling operational amplifiers,” IEEE Trans. Circuits Syst., vol. 37, pp. 326–334, Mar. 1990.
[30] M. Miyahara and A. Matsuzawa, “The effects of switch resistances on pipelined ADC performances and the optimization for the settling time,” IEICE Trans. Electron., vol. E90-C, pp. 1165-1171, Jun. 2007.
[31] P. Gray, P.J. Hurst, S.H. Lewis, and R.G. Meyer, Analysis and Design of Analog Integrated Circuits (4th Edition), John-Wiley&Sons, 2001.
[32] R. Gregorian and G.C. Temes, Analog MOS integrated circuits for signal processing, New York: Wiley, 1986.
[33] R. Schreier, J. Silva, J. Steensgaard, and G.C. Temes, “Design-oriented estimation of thermal noise in switched-capacitor circuits,” IEEE Trans. Circuits Syst. I: Regular papers, vol. 52, pp. 2358–2368, Nov. 2005.
[34] J.F. Lin, “A high speed pipelined A/D converter using modified time-shifted CDS technique,” Master Thesis, National Cheng Kung University, 2005.
[35] S.H. Lewis and P.R. Gray, “A pipelined 5-Msample/s 9-bit analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. SC-22, pp. 954 - 261, Dec. 1987.
[36] S.H. Lewis, H.S. Fetterman, G.F. Gross, Jr., R. Ramachandran, and T.R. Viswanathan, “A 10-b 20-Msample/s analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 27, pp. 351 - 358, Mar. 1992.
[37] S.H. Lewis, H.S. Fetterman, G.F. Gross, Jr., R. Ramachandran, and T.R. Viswanathan, “A pipelined 9-stage video-rate analog-to-digital converter,” IEEE Custom Integrated Circuits Conference, May 1911, pp. 26.4.1-26.4.4.
[38] S. Jiang, M. A. Do, K. S. Yeo, and W. M. Lim, “An 8-bit 200-MSample/s pipelined ADC with mixed-mode front-end S/H circuit,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, no. 6, pp. 1430-1440, Jul. 2008.
[39] T. Ueno, T. Ito, D. Kurose, T. Yamaji, and T. Itakura, “A 1.2 V 24 mW/ch 10 bit 80 MSample/s pipelined A/D Converters,” IEEE Custom Integrated Circuits Conference, Sep. 2006, pp. 501-504.
[40] Y. Chiu, P.R. Gray, and B. Nikolic, “A 14-b 12-MS/s CMOS pipeline ADC with over 100-dB SFDR,” IEEE J. Solid-State Circuits, vol. 39, pp. 2139-2151, Dec. 2004.
[41] D. Miyazaki, S. Kawahito, and M. Furuta, “A 10-b 30-MS/s low-power pipelined CMOS A/D converter using a pseudo-differential architecture,” IEEE J. Solid-State Circuits, vol. 38, pp. 369-373, Feb. 2003.
[42] K. Nagaraj, H.S. Fetterman, J. Anidjar, S.H. Lewis, and R.G. Renninger “A 250-mW, 8-b, 52-Msamples/s parallel-pipelined A/D converter with reduced number of amplifiers” IEEE J. Solid-State Circuits, vol.32, pp. 312-320, Mar. 1997.
[43] D. Kurose, T. Ito, T. Ueno, T. Yamaji, and T. Itakura, “55-mW 200-MSPS 10-bit pipeline ADCs for wireless receivers” IEEE J. Solid-State Circuits, vol.41, pp. 1589-1595, Jul. 2006.
[44] J. Li, R. Leboeuf, M. Courcy, and G. Manganaro, “A 1.8V 10b 210MS/s CMOS Pipelined ADC Featuring 86dB SFDR without Calibration” IEEE Custom Integrated Circuits Conference, Sep. 2007, pp. 317-320.
[45] S.C. Lee, Y.D. Jeon, K.D. Kim, J.K. Kwon, J. Kim, J.W. Moon, and W. Lee, “A 10b 205MS/s 1mm2 90nm CMOS Pipeline ADC for Flat-Panel Display Applications” International Solid-State Circuits Conference Dig. Tech. Papers, Feb. 2007, pp. 458-615.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊