跳到主要內容

臺灣博碩士論文加值系統

(34.226.244.254) 您好!臺灣時間:2021/08/03 02:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俞廷
研究生(外文):Yu-Ting Chen
論文名稱:利用新型可切換式電感設計多標準/多頻帶壓控振盪器
論文名稱(外文):Multi-standard/Multi-band Voltage Controlled Oscillator Design with Novel Switchable Inductors
指導教授:黃尊禧
指導教授(外文):Tzuen-Hsi Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:97
中文關鍵詞:Q值電感雙頻的四相位壓控振盪器相位雜訊相位誤差輸出功率
外文關鍵詞:inductorquality factorCOMSdual band Quadrature Voltage Controlledoutput powerphase errorphase noise
相關次數:
  • 被引用被引用:1
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
在這篇論文中,我們先提出一個新型對稱的可切換差動電感架構,與傳統的內四方形的架構電感相比之下,此新型電感架構可以有效的防止特性的惡化。從電磁模擬軟體的基底損耗密度分布模擬比較之下,可以證實新型電感可以有效提升切換電感的特性。將兩個測試元件分別為新型與舊型的布局結構,利用0.18 �慆 RF CMOS技術來製造。兩電感在相同的製程標準、相同的面積以及相同的感值之下,從量測的資料可以觀察到當開關為關閉時,新型架構的Q值比傳統架構的電感提升41%(在頻率為1.8 GHz的時候);當開關為打開時,新型電感的Q值依然有24%的提升(在頻率為7.5 GHz的時候)。
我們將此兩個測試元件帶入雙頻的四相位壓控振盪器中,並利用此振盪器來證明新型架構的切換電感與舊型的切換電感相比仍可提升電路的特性,此振盪器為互補式架構,並利用PMOS電晶體來做四相位偶合,其結果與其他雙頻四相位振盪器的文獻比較之下仍不遜色。此雙頻四相位壓控振盪器為0.18 μm CMOS製作,在電壓為1.8 伏特下操作,此四相位壓控振盪器振盪在穩定的雙頻帶下,分別為3.18 GHz到3.3 GHz以及從 6.94 GHz 到7.44 GHz。在震盪頻率為3.3 GHz 和 6.9 GHz,其相位雜訊距中心頻率1 MHz 時分別為-121.9 dBc/Hz and -111.9 dBc/Hz。在高頻帶與低頻帶中,平均輸出的相位誤差皆小於1度。
此外,我們亦提出2位元數位控制差動連續調變補償電路設計概念。此技術可以利用在壓控震盪器中,並且可以使的震盪器可以精準的震盪在4.488 GHz、3.960 GHz 和 3.432 GHz當Vtune為相同的況狀下,使得此壓控震盪器可以被跳頻鎖定的鎖相迴路來使用。此VCO也是以0.18 μm CMOS來製作,在2.5 伏特下操作,量測到此壓控震盪器在頻率為4.488 GHz、3.960 GHz 和 3.432 GHz下,其相位雜訊距中心頻率1 MHz時分別為-116.6 dBc/Hz、-116.4 dBc/Hz 和 -114.0 dBc/Hz,而其輸出功率在這些頻率下分別為2.24 dBm、2.04 dBm 和 -1.52 dBm。
First, a novel symmetric layout structure for switchable differential inductor (SWD-inductor) is proposed. Our proposed structure relieves the penalty of quality factor degradation for a switchable differential in conventional quadrangular spiral layout. From the substrate loss density distribution predicted by an electromagnetic (EM) wave simulator, the reason why the quality factor can be improved from our proposed novel SWD-inductor structure is interpreted. Two testkeys in the novel and the conventional layout structures are fabricated in a 0.18 �慆 RF COMS technology. Under the same criterion of area consumption and inductance value in these testkeys, the experimental data show that the quality factor of this proposed structure can be improved by 41% (at 1.8 GHz) when the switch is turned off and by 24% ( at 7.5 GHz) when the switch is turned on, respectively.
Observe two testkeys incorporated in dual band Quadrature Voltage Controlled Oscillators (QVCOs) to prove that the novel structure inductor can improve the performance of the circuit rightly. This QVCO has complementary architecture and uses the PMOS transistor to make the quadrature signals. The measurement results show that the novel structure inductor not only has higher performance than traditional inductor, but also not inferior with other papers, which QVCO was fabricated in 0.18 μm CMOS process and operated at 1.8 V supply, the QVCO measures a stable dual-band operation from 3.18 GHz to 3.3 GHz and from 6.94 GHz to 7.44GHz. At 3.3 GHz and 6.9 GHz, the measured phase noise are -121.9 dBc/Hz and -111.9 dBc/Hz at 1MHz offset. And the average output phase errors are about less than 1° at high band and low band.
Beside, we also presented a new concept of the 2-bits digitally-controlled differential continuously-tunable compensation circuit. This technique can be used for VCO to oscillate at 4.488 GHz, 3.960 GHz and 3.432 GHz accurately as the same controlled voltage Vtune to be applied for the jumping lock PLL. This VCO was fabricated in 0.18μm CMOS process with 2.5 V supply voltage, at 4.488 GHz, 3.960 GHz, and 3.432 GHz, the VCO measures phase noise at 1MHz offset is -116.6 dBc/Hz, -116.4 dBc/Hz and -114.0 dBc/Hz, and the output power at these frequency is 2.24 dBm, 2.04 dBm, and -1.52 dBm, respectively.
Chinese Abstract.........................................I
Abstract.................................................III
Acknowledgement..........................................V
Contents.................................................VI
List of Tables...........................................VIII
List of Figures..........................................IX

Chapter 1................................................1
Introduction.............................................1
1-1 Background...........................................1
1-2 Motivation...........................................3
1-3 Thesis Organization..................................4

Chapter 2................................................6
Switchable Inductors.....................................6
2-1 On-Chip Inductors and Switchable Inductors...........6
2-1-1 Structures of Inductor and Switchable Inductor...6
2-1-2 Inductance.......................................12
2-1-3 Quality Factor...................................15
2-2 Loss Mechanism of Inductors..........................17
2-2-1 Conductor Loss (Skin effect, Eddy current,
Proximity effects).................................17
2-2-2 Substrate Loss...................................19
2-2-2-1 Parasitic Effects Induced by Magnetic Field
and Electric Field...........................19

Chapter 3................................................21
Novel Symmetric-Structured Switchable Differential
Inductor.................................................21
3-1 Introduction.........................................21
3-2 Switchable Inductor Design...........................22
3-3 Experimental Results.................................29
3-4 Inductor Modeling....................................31
3-5 Optimizing Switchable Inductor.......................33

Chapter 4................................................36
Voltage Controlled Oscillator............................36
4-1 Introduction.........................................36
4-2 Start-Up Condition...................................36
4-3 LC Oscillator........................................38
4-4 Design Parameters of the LC VCO......................40
4-4-1 Phase Noise......................................40
4-4-2 Tuning Range and Linearity.......................42
4-4-3 Power Consumption................................43
4-4-4 Pushing and Pulling Effect.......................45
4-4-5 Output Power.....................................45
4-4-6 Output Swing.....................................45
4-5 Comparison of Different VCO Architecture.............45
4-6 The Way to Generate Quadrature Signal................46

Chapter 5................................................52
QVCO for DS-UWB Applications.............................52
5-1 Introduction.........................................52
5-2 Comparison between Various Cross-Coupled QVCO
Topologies...........................................53
5-3 QVCO Circuit Design..................................55
5-4 Simulation Procedure.................................59
5-5 Simulation Results...................................62
5-6 Measurement Results..................................66

Chapter 6................................................73
VCO for MB-OFDM Mode-1Applications.......................73
6-1 Introduction.........................................73
6-2 VCO Circuit Design...................................74
6-3 Simulation Procedure.................................78
6-4 Simulation Results...................................81
6-5 Measurement Results..................................83

Chapter 7................................................89
Conclusions and Future Work..............................89
7-1 Conclusions..........................................89
7-2 Future Work..........................................90

References...............................................92
[1] R. Harjani, J. Harvey, and R. Sainati, “Analog/RF physical layer issues for UWB systems,” in Proc. the 17th Int. Conf. VLSI Design, Mumbai, India, pp. 941-948, 2004.
[2] R. Fisher et al., “DS-UWB physical layer submission to 802.15 task group 3a,” IEEE pp. 802.15-04/0137r4, Jan. 2005
[3]A. Batra et al., “Multi-band OFDM physical layer proposal for IEEE 802.15 task group 3a,” IEEE P802.15 Working Group for Wireless Personal Area Networks, Mar. 2004
[4] S. M. Yim and K. K. O, “Demonstration of a switched resonator concept in a dual-band monolithic CMOS LC-tuned VCO,” in Proc. IEEE Custom Integrated Circuit Conference, pp. 205-208, May. 2001.
[5] L. Zhenbiao and K. K. O, “A Low-Phase-Noise and Low-Power Multiband CMOS Voltage-Controlled Oscillator,” IEEE Journal of Solid-State Circuits, vol.40, no.6, pp. 1296-1302, Jun. 2005.
[6] J. L. Wang, Y. R. Tzeng and T. H. Huang, “Integrated switchable inductors with symmetric differential layout,” in Proc. Asia-Pacific Microwave Conference, pp. 1369-1372, Dec. 2006.
[7] M. Danesh and J. R. Long, “Differentially Driven Symmetric Microstrip Inductors,” IEEE Transactions on Microwave Theory and Technique, VOL. 50, NO.1, pp. 332-341, Jan 2002.
[8] P. Park, C. S. Kim, M. Y. Park, S. D. Kim and H. K. Yu, “Variable inductance multilayer inductor with MOSFET switch control.” IEEE Electron Device Letters, pp. 144-146, Mar. 2004.
[9]A. Nieuwoudt and Y. Massoud, “Design Optimization of Switchable Multi-Port Spiral Inductors,” Analog Integrated Circuits and Signal Processing, Vol. 51, No. 3, pp. 195-200, Jun. 2007.
[10]X. Huo, P. C. H. Chen, K. J. Chan, H. C. Luong,” A Physical Model for On-Chip Spiral Inductors With Accurate Substrate Modeling,” IEEE Transactions on Electron Devices, vol. 53, no 12, pp. 2942-2949, Dec. 2006.
[11]H. M. Hsu, "Analytical Formula for Inductance of Metal of Various Widths in Spiral Inductors," IEEE Transactions on Electron Devices, vol. 51, no. 8, pp. 1343-1346, Aug. 2004.
[12]J. Aguilera and R. Berenguer, “Design and test of integrated inductors for RF applications,” Kluwer Academic Publishers, July-Aug. 2006
[13]C. P. Yue, C. Ryu, J. Lau, T. H. Lee, and S. S. Wong, “A physical model for planar spiral inductors on silicon,” Proceedings of International Electron Devices Meeting, pp. 155-158, Dec. 1996.
[14]L. Zheng, L. Zheying and L. Jia, “Optimizing Approach of Spiral Inductors for Si-Based ICs,” 7th International Conference on ASIC, ASICON '07, pp. 656-659, Oct. 2007.
[15]F. Rotella, B. K. Bhattacharya, V. Blaschke, M. Matloubian, A. Brotman, Y. Cheng, R. Divecha, D. Howard, K. Lampaert, P. Miliozzi, M. Racanelli, P. Singh, and P. J. Zampardi, “A broad-band lumped element analytic model incorporating skin effect and substrate loss for inductors and inductor like components for silicon technology performance assessment and RFIC design,” IEEE Trans. Electron Devices, vol. 52, pp. 1429-1441, July. 2005.
[16]J. Craninckx and M. S. J. Steyaert, “A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol.32, pp. 736-744, May. 1997.
[17]A. Kral, F. Behbahani, and A. A. Abidi, “RF-CMOS oscillators with switched tuning,” in Proc. IEEE Custom Integrated Circuits Conference, pp. 555-558, May. 1998.
[18]A. Fard, T. Johnson, M. Linder, and D. Aberg, “A comparative study of CMOS LC VCO topologies for wide-band multi-standard transceivers,” IEEE International Midwest Symposium on Circuits and Systems, vol.3, pp.17-20, July. 2004.
[19]I. C. H. Lai and M. Fujishima, “A new on-chip substrate-coupled inductor model implemented with scalable expressions,” IEEE Journal of Solid State Circuits, vol. 41, no. 11, pp. 2491-2499, Nov. 2006.
[20]A. Dec and K. Suyama, “A 1.9-GHz CMOS VCO with micromachined electromechanically tunable capacitors,” IEEE J. Solid-State Circuits, vol. 35, pp. 1231-1237, Aug. 2000.
[21]B. Razavi, “Design of Analog CMOS Integrated Circuit,” International Edition. McGraw-Hill Higher Education, Inc, 2001.
[22] B. Razavi, “RF Microelectronics, “Englewood Cliffs, NJ: Prentice-Hall, 1998.
[23]A. Hajimiri and T. H. Lee, "A General Theory of Phase Noise in Electrical Oscillators," IEEE Journal of Solid-State Circuits, Vol. 33, No. 2, Feb. 1998
[24]D. B. Leeson, “A Simple Model of Feedback Oscillator Noise Spectrum,” Proc. IEEE, vol. 54, pp. 329-330, Feb. 1966.
[25]D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE Journal of Solid-State Circuit, vol.36, no.6, Jun. 2001.
[26]J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” Proc. IEEE Custom Integrated Circuits Conf., Orlando, FL, pp. 569-572, May. 2000.
[27]Z. Wang, H. S. Savci and N. S. Dogan, “1-V ultra-low-power CMOS LC VCO for UHF quadrature signal generation,” Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), pp. 4022-4025, May. 2006.
[28]T. H. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, pp. 326-336, Mar. 2000.
[29]C. Y. Wu and H. S. Kao, ”A 2-V low-power CMOS direct-conversion quadrature voltage-controlled oscillator and RF amplifier for GHz RF transmitter applications,” IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, C-49, pp. 123-134, Feb. 2002.
[30]C. W. Yao and A. N. Willson, “A Phase-Noise Reduction Technique for Quadrature LC-VCO with Phase-to-Amplitude Noise Conversion,” IEEE ISSCC 2006, Feb. 2006.
[31]P. Andreani, “A 2 GHz 17% tuning range quadrature CMOS VCO with high Figure of Merit and a 0.6 degree phase error.” in Proc. ESSCIRC, , pp. 815-818, Sept. 2002.
[32]P. Andreani, et al., “Analysis and Design of a 1.8GHz CMOS LC Quadrature VCO,” IEEE J. Solid-State Circuits, Vol. 37, No. 12, pp. 1737-1747, Dec. 2002.
[33]I. R. Chamas and S. Raman, “A comprehensive analysis of quadrature signal synthesis in cross-coupled RF VCOs,” IEEE Transactions on circuits and systems-I: Regular Papers, C-54, pp. 689-704, Apr. 2007.
[34]P. Andreani, A. Bonfanti, L. Romano, and C. Samori, “Analysis and design of a 1.8-GHz CMOS LC quadrature VCO,” IEEE J. Solid-State Circuits, vol. 37, pp. 1737-1747, Dec.2002.
[35]Andreani, P. (2002). “A low-phase-noise, low phase error 1.8 GHz quadrature CMOS VCO.” In Proc. ISSCC 2002, pp. 290-291, Feb 2002.
[36]Yi-Hsien Cho, Ming-Da Tsai, Ying-Tang Chang, and Huei Wang, “A Wide-band Low Noise Quadrature CMOS VCO,” IEEE Conf. Asian Solid-State Circuits, pp. 325-328, Nov. 2005.
[37]P. Andreani, and X. Wang, “A 2 GHz low phase noise low phase error CMOS quadrature VCO,” In Proc. NORCHIP, pp. 303-308, 2002.
[38]H. Gao, Z. Q. Lu, F. C. Lai.” Design of Low-Phase-Noise Low-Phase-Error CMOS Quadrature VCO,” in Microwave and Millimeter Wave Technology, ICMMT '07. International Conference on, pp. 1-4, Apr. 2007.
[39]J. Gil, I. Kwon, and H. Shin, “CMOS implementation of a 2.4-GHz switch mixer and quadrature VCO,” Journal of Korean Physical Society, C-42, pp. 241-245, 2003.
[40]A. Jerng and C. G. Sodini, “The impact of device type and sizing on phase noise mechanisms,” IEEE Journal of Solid State Circuits, C-40, pp. 360-369, Feb. 2005.
[41]B. Kung and R. Harjani, “High-frequency LC VCO design using capacitive degeneration,” IEEE Journal of Solid-State Circuit, vol.39, no.12, Dec. 2004.
[42]C. H. Kim, S. H. Shin and H. J. Yoo, ” A Dual Band CMOS Quadrature VCO for Low Power and Low Phase Noise Application,” IEEE International Workshop on Radio-Frequency Integration Technology, RFIT 007, pp. 310 - 313, Dec. 2007.
[43]H. Shin, Z. Xu and M. F. Chang, “A 1.8-V 6/9-GHz reconfigurable dual-band quadrature LC VCO in SiGe BiCMOS technology,” IEEE J. of Solid-State Circuits, vol.38, no.6, pp.1028-1032, Jun. 2003
[44]S. Rong and H. C. Luong, "1V 4GHz-and-10GHz Transformer-Based Dual-Band Quadrature VCO in 0.18-µm CMOS," 2007 IEEE Custom Integrated Circuits Conference (CICC), San Jose, USA, Sept. 2007
[45]J. H. Kim and H. J. Yoo, “Low power low phase noise LC quadrature VCO topology,” IEICE Trans. Fundamentals, vol. E89-A, no. 6, pp. 1547-1551, Jun. 2006
[46]W. B. Wilson, U. K. Moon, K. R. Lakshmikumar and L. Dai, “A CMOS self-calibrating frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 35, no. 10, pp. 1437-1444, Oct. 2000
[47]C. W. Lo and H. C. Luong, “A 1.5-V 900-MHz Monolithic CMOS fast-switching frequency synthesizer for wireless applications,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 459-470, Apr. 2002.
[48]J. Kim, J. Shin, S. Kim and H. Shin, “A wide-band CMOS LC VCO with linearized coarse tuning characteristics,” IEEE Trans. Circuits Syst. II Express Briefs. vol. 55, pp. 399-403, May. 2008.
[49]T. C. Lee and K. J. Hsiao, “The design and analysis of a DLL-based frequency synthesizer for UWB application,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1245-1252, Jun. 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊