跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/03 07:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳譽升
研究生(外文):Yu-sheng Chen
論文名稱:以分層電鍍銅銦硒薄膜製備二硒化銅銦太陽能電池之研究
論文名稱(外文):A study of CuInSe2 solar cell by electrodeposited Cu/In/Se triplelayer
指導教授:李文熙
指導教授(外文):Wen-hsi Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:113
中文關鍵詞:太陽能電池
外文關鍵詞:solar cell
相關次數:
  • 被引用被引用:1
  • 點閱點閱:151
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是以成本較低且製程較簡單的電鍍來取代傳統的物理氣
相沉積法來製備二硒化銅銦(CuInSe2)薄膜太陽能電池之吸收層。由於電
鍍能夠大面積製作並且成本低廉等優點,此研究對於在產業界量產上有
相當大的助益。本實驗有別於以往的共電鍍方式成膜,而是分別依序電
鍍銅、銦、硒,再經過RTA熱退火處理後形成CIS吸收層,並藉由控制各
層膜的厚度使銅、銦、硒組成比為1:1:2,製備出高品質的CuInSe2主吸
收層。
電鍍薄膜的實驗中,電鍍的時間、電鍍的電位、電鍍的電流、電鍍液
的濃度、電鍍液的PH值,以及硒化的溫度和時間都是電鍍CIS薄膜實驗的
變因。首先以循環伏安法找出銅、銦、硒三個溶液的還原電位,然後再
藉由調配溶液的濃度和酸鹼值以及搭配恆電位儀來調整電鍍的時間、電
壓或電流求出各項組成最佳電鍍條件。最後控制RTA的溫度和時間來求
得熱退火處理的最佳參數來完成CIS吸收層。完成的CIS薄膜將會利用
XRD、EDS、SEM、拉曼光譜儀、四點探針及α-step等儀器量測。經過一
系列的實驗和分析結果,我們終於得到特性良好的CIS主吸收層。
In our research, we use the low cost and simple method of
electrodeposition to fabricate CuInSe2 as the major absorbent layer of thin
film solar cell instead of traditional physical vapor deposition. Because the
electrodeposition can be fabricated in big area and low cost, this research has
good benefit for industry. Instead of co-electodeposition process, we
electrodeposit Cu, In and Se step by step. After annealing treatment with RTA,
the triple-layer becomes the CuInSe2 thin film. We fabricate high quality
CuInSe2 as the major absorbent layer by controlling the thickness of Cu, In
and Se layer as the atomic ratio 1:1:2, respectively.
There are some parameters and variables such as electroplating time,
voltage and current, concentrations, PH value of chemical bath, annealing
temperature and time in our experiment. First, we use the cyclic voltammetry
to find the reduction potential of Cu, In and Se with Potentiostat and change
the variables to find the optimized conditions. Analytical instrumentations are
applied to characterize the desired thin films by XRD、EDS、SEM、Raman
spectrometer、four point probe and α-step. Finally, the optimized performance
of the major absorbent layer was found by a series of careful investigations
and analysis.
第一章、緒論 ............................................................................................ 1
1-1 太陽能之需求 .............................................................................. 1
1-2 太陽能電池簡介 .......................................................................... 2
1-3 CuInSe2 太陽能電池 ..................................................................... 6
1-4 CuInSe2 常見的鍍製方式 ............................................................. 7
1-5 CuInSe2 太陽能電池元件設計 ................................................... 12
1-5-1 鈉玻璃(Soda-lime)基板 .................................................. 13
1-5-2 鉬金屬(Mo)背電極 .................................................... 13
1-5-3 CuInSe2 主吸收層 ........................................................... 14
1-5-4 CdS 緩衝層 ...................................................................... 15
1-5-5 AZO 透明導電膜透光層及抗反射層 ............................. 16
1-5-6 Al 前電極 ........................................................................ 16
1-6 實驗動機及目標 ........................................................................ 17
第二章、原理 .......................................................................................... 18
2-1 太陽能電池原理 ........................................................................ 18
2-1-1 半導體基本原理 ............................................................. 18
2-1-2 太陽能電池的物理機制 ................................................. 20
2-1-3 太陽能電池的電路模型 ................................................. 22
2-1-4 太陽能電池的電性量測 ................................................. 24
2-2 電鍍簡介 .................................................................................... 25
2-2-1 電鍍基本裝置及電鍍系統 ............................................. 25
2-2-2 電鍍基本原理 ................................................................. 26
2-2-3 法拉第定律 ..................................................................... 29
2-2-4 電流效率 ......................................................................... 30
2-2-5 氧化還原電位 ................................................................. 30
2-2-6 過電壓對成核的影響 ..................................................... 32
2-2-7 鍍層的成核和成長 ......................................................... 33
2-2-8 光澤與平整性 ................................................................. 34
2-2-9 電鍍的膜厚計算 ............................................................. 35
第三章、實驗 .......................................................................................... 36
3-1 實驗流程 .................................................................................... 36
3-1-1 鈉玻璃基板清洗 ............................................................. 38
3-1-2 濺鍍Mo 背電極 .............................................................. 38
3-1-3 電鍍CuInSe2 及RTA 快速熱退火 ................................ 39
3-1-4 化學水浴法鍍製CdS ..................................................... 40
3-2 化學藥品及實驗儀器介紹 ........................................................ 41
3-3 分析儀器原理介紹 .................................................................... 42
3-3-1 α-step 膜厚量測儀 ........................................................... 42
3-3-2 四點探針儀 ..................................................................... 44
3-3-3 掃描式電子顯微鏡(SEM) .............................................. 45
3-3-4 能量分散式光譜儀(EDS) ............................................... 45
3-3-5 X 光繞射儀(XRD) ........................................................... 46
3-3-6 拉曼光譜儀 ..................................................................... 49
第四章、實驗結果與討論 ...................................................................... 50
4-1 單一元素的電化學行為 ............................................................ 50
4-2 電鍍銅實驗 ................................................................................. 53
4-2-1 定電壓電鍍銅 ................................................................. 53
4-2-2 定電流電鍍銅 ................................................................. 57
4-2-3 改變溶液條件及添加平整劑 ......................................... 62
4-2-4 兩階段式電鍍 ................................................................. 64
4-2-5 電鍍銅照光實驗 ............................................................. 72
4-3 電鍍銦實驗 ................................................................................ 76
4-4 電鍍硒實驗 ................................................................................ 84
4-5 RTA 熱退火實驗 ........................................................................ 88
第五章、結論 ........................................................................................ 105
Reference ................................................................................................ 107
[1] http://big5.china.com.cn/chinese/huanjing/296881.htm
[2]莊家琛, 太陽能工程-太陽電池篇,p.7-2 至p.7-3.
[3]http://click108.eservice.sina.com.tw/click108/talk08001. php
[4]陳宏仁,”有機太陽能電池之發展現況”工業材料雜誌192期,p.102-113.
[5]Karsten Otte , Liudmila Makhova , Alexander Braun , IgorKonovalov ,
Flexible Cu(In,Ga)Se2 thin-film solar cells for space application. Thin
Solid Films, 511-512: p. 613-622,2006.
[6]G.M. Hanket, U.P.S., E. Eser, W. N.ShaFaran, R. W. Birkmire,
Photovoltaic Specialists Conference. Proceedings of the 29th IEEE, 567,
2002.
[7] Jeffery L. Gray, Handbook of photovoltaic since and Enginerring, A
Luque and S. Hegedus, John Wiley &Sons, chap 3, 2003.
[8] http://www.kson.com.tw/chinese/study_23-6.htm
[9]張佳文,”新穎的次世代微晶矽鍺薄膜太陽能電池”工業雜誌材料268期:
p.72, 2009.
[10]Yang, J., et al., Recent progress in amorphous silicon alloy leading to
13% stable cell efficiency. 26th PVSC: p. 563-568, 1997.
[11]胡振國, 光伏電池-漸趨重要,光訊, 81: p. 22-35, 1999.
[12]曾百亨, CuInSe2 薄膜太陽電池, 光訊, 68: p. 27-30, 1997.
[13]Mitchell, K.W., et al., CuInSe2 cells and modules. IEEE transaction on
electron devices, 37(2): p. 410-417, 1990.
[14]Dimmler, B., M. Powalla, and H.W. Schock, CIS-based thin film
photovoltaic modules: Potential and prospects. Prog. Photovolt: Res.
Appl., 10: p. 149-157, 2002.
[15] R. N. Bhattacharya and J. Keane, J. Electrochem.Soc,143,854,1984.
[16] R. N. Bhattacharya , P. J. Sebastian and X . Mathew , Solar Energy
Materials and Solar Cells, 63:p.316, 2000.
[17] P. J. Sebastian, E. Calixto and A. Fernandez, J. of Crystal Growth,
169:p.287, 1996.
[18] R. Friedfeld, R. P. Raffaelle, J. G. Mantovani, Electrodeposition of
CuInxGa1-xSe2 thin films, Solar Energy Materials & Solar Cells,
58:p.375-385, 1999.
[19]Chu, N. and D. Honeman, Solar cells, 31: p. 197 , 1991.
[20] M. E. Calixto, R. N. Bhattacharya, P. J. Sebastian, A. M. Fernandez, S.
A.Gamboa, R. N. Noufi, Cu(In,Ga)Se2 based photovoltaic structure by
electrodeposition and processing, Solar Energy Materials and Solar Cells,
55: p.23-29, 1998.
[21]Moller, H.J., Semiconductors for solar cells, 1993.
[22] R. A. Mickelsen and M. S. Chen, Appl. Phys. Lett., 26:p. 5, 1980.
[23] S. P. Grindle, A. H. Clark, S. Rezaie-Serej, J. Mcneily, L. L.Mcneily:
Journal of Applied Physics, 51:p. 10, 1980 .
[24] N. Romeo, V. Canevari, G. Sberveglieri, A. Bosio, Growth of
Large-Grain CuInSe2 Thin Films by Flash-Evaporation and Sputtering.
Solar Cells, 16:p.155-164, 1986.
[25] B. Pamplin and R. S. Feigelson, Thin Solid Films, 60:p. 144, 1979.
[26] D. Pottier and G. Maurin, J. Appl. Electrochem., 19:p.361, 1989.
[27] Raghu N. Bhattacharya, A.M.F., CuIn1-xGaxSe2-based photovoltaic
cells from electrodeposited precursor films. Solar Energy Materials &
Solar Cells, 76: p. 331-337, 2003.
[28] A . Kampmann , V . S ., J . Rechid , R . Reineke-Koch , Large area
electrodeposition of Cu(In,Ga)Se2. Thin Solid Films, 361-362: p.309-313,
2000.
[29]R. K. Pandey, S. N. Sahu and S. Chandra, Handbook of Semiconductor
Electrodeposition, Marcel Dekker, Inc., New York, p. 247, 1996.
[30]D. Braunger, D. Hariskos, G. Bilger, U. Rau, H.W. Schock, Influence of
sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin films. Thin
solid films, 361-362: p.161-166, 2000.
[31]M. Ruckh, D. Schmid, M. Kaiser, R. Schäffler, T. Walter, H. W.Schock,
Influence of Substrates on the Electrical Properties of Cu(In,Ga)Se2 Thin
Films. 1st World Conference on Photovoltaic Energy Conversion,
p.156-159, 1994.
[32]T.J. Vink, M.A.J. Somers, J.L.C. Daams, A.G. Dirks, Stress, strain, and
microstructure of sputter-deposited Mo thin films. Journal of applied
physics, 70:p. 4301-4308, 1991.
[33]M. Bar, W. Bohne, J. Rohrich, E. Strub, S. Linder, M. C. Lux-Steiner,and
Ch.-H.Fischer, T.P.Niesen, F.Karg, J. Appl. Phys., 7:p. 3858 , 2004.
[34]Shay, J.L. and J.H. Wernick, Ternary chalcopyrite semiconductors:
Growth,Electronic properties, and applications, 1975.
[35] Noufi, R., et al., Appl. Phys. Lett., 45: p. 668, 1984.
[36]A. Romeo, M.Terheggen, D.Abou-Ras, D.L.Batzner, F.-J.Haug, M.Kalin,
D.Rudmann and A. N. Tiwari, Prog. Photovolt: Res. Appl., 12: p. 97 ,
2004.
[37]Capasso, F. and G. Maragaritondo, Heterojunction band
discontinuities: Physics and device application. Elsevier science, 1987.
[38]Schaffler, R. and H.W. Schock, High mobility ZnO:Al thin films grown
by reactive DC magnetron sputtering,1993.
[39]Jack L.Stone,Photovoltaics:Unlimited Electrical Energy From the
Sun, Issue of Physics Today, P.1-7, 1993.
[40] S. M. Sze, Semiconductor Devices Physics and Technology ,2nd ed,
John Wiley & Sons New York, chap.9.5.2, 2002.
[41]蔡進譯, 高效率太陽電池-從愛因斯坦的光電效應談起, 物理, 雙月刊,
二七卷, 五期, 2005 年10 月.
[42]尤光先, 電鍍工程學. 徐氏基金會出版, p. 1-5, 1976.
[43]賴耿陽, 實用電鍍技術全集, 復漢出版社, 1981.
[44]蘇友偉, 波形參數對通孔鍍銅之影響. 逢甲大學材料與製造工程所碩
士論文, p. 16, 2004.
[45] 張裕琪, 表面處理, 高立圖書出版, p. 10-12, 1990.
[46]Milan Paunovic, Mordechay Schlesinger, Fundamentals of
Electrochemical Deposition, Electrochemical Society ,1998.
[47]W. J. Lorenz, G. Staikov, Electrochemical phase formation and
growth :an introduction to the initial stages of metal deposition, Journal of
Applied Electrochemistry,28,5: p.564-565,1998.
[48] B. H. Vassos, Electroanalytical chemistry, Galen Wood ,1914.
[49]胡啟章,”電化學原理與方法”,五南,2002.
[50]Allen J. Bard., Larry R. Faulkner, Electrochemical Methods,
Fundamentals and Applications, John Wiley & Sons, New York , 1980.
[51]白蓉生,深孔鍍銅的困難與因, 98 年電路板採購與製程手冊, 電路板
資訊, 1998.
[52]R. Friedfeld1, R.P.R.a., J.G. Mantovani, Electrodeposition of
CuInxGa1-xSe2 thin films. Solar Energy Materials & Solar Cells, 58:
p. 375-385, 1999.
[53]金凱翔, 陳顧仁,謝慶宗 ,李易融, 電致變色元件之研製, in 崑山科技
大學電機系專題報告. p. 1-50, 九十五年十二月.
[54] http://airp.org.tw/SOP/NCKU/SOP%204-Point%20Probe.pdf
[55]A. Kampmann, V.S., J. Rechid, R. Reineke-Koch, Large area
electrodeposition of Cu(In,Ga)Se2. Thin Solid Films, 361-362: p.309-313,
2000.
[56]Naglaa Fathy, R.K., Masaya Ichimura, Preparation of ZnS thin films by
the pulsed electrochemical deposition. Materials Science and Engineering
B107: p. 271-276, 2004.
[57]許樹恩,吳泰伯, X 光繞射原理與材料結構分析, 中國材料學會,新竹,
p.169, 1996.
[58]汪建民,材料分析,中國材料科學學會, 1998.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top