跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:ac57:fc92:1c8d:566e) 您好!臺灣時間:2025/01/14 08:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李聯育
研究生(外文):Lien-Yu Lee
論文名稱:基於H.264/AVC的低複雜度子頻帶/小波架構的可調影像編碼
論文名稱(外文):Low complexity Subband/Wavelet Framework for Scalable Video Coding Based on the H.264/AVC
指導教授:雷曉方
指導教授(外文):Sheau-Fang Lei
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:53
中文關鍵詞:子頻帶編碼可調影像編碼小波轉換
外文關鍵詞:subband coding(SBC)wavelet transformscalable video coding(SVC)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:192
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
子頻帶/小波編碼是H.264/SVC標準中的一個架構,子頻帶編碼架構將小波轉換的原理套用在以離散餘弦轉換為基礎的H.264/SVC架構中。由於標準中的子頻帶編碼採用的9/7小波轉換需要較高的運算量和較複雜的運算複雜度。因此我們設計一個低運算量和低複雜度的子頻帶編碼架構,可以簡單的由JSVM架構修改成我們的子頻帶編碼架構。對於硬體的實現上,也可以較簡易的實現。本論文提出的架構在編碼效率上會略低於原始子頻帶編碼,但是還是會高於JSVM的編碼效率。
The subband/wavelet coding was adopted by the H.264/SVC standard. The SBC use 9/7 wavelet transform for DCT-based H.264/SVC. The 9/7 DWT need lots of computation and increase complexity. We proposed a new SBC structure for low complexity. For hardware, the new SBC structure is easy for implementation. The compression efficiency of the new SBC is higher than JSVM, and lower than SBC. But the efficiency between the new SBC and SBC is similar.
目錄
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 v
圖目錄 vi
第 1 章 概論 1
1.1 數位影像編碼概論 1
1.2 動機 2
1.3 章節組織 3
第 2 章 可調影像編碼(Scalable Video Coding) 4
2.1 可調影像編碼的概觀 4
2.2 H.264/SVC 6
2.2.1 時間上的調整(Temporal Scalability) 7
2.2.2 空間上的調整(Spatial Scalability) 10
2.2.3 品質上的調整(Quality Scalability) 11
2.2.4 延伸的空間上調整(Extended Spatial Scalability) 12
2.3 以小波為基礎的可調影像編碼(Wavelet-Based Scalable Video Coding) 13
第 3 章 H.264/SVC之子頻帶/小波編碼(Subband/Wavelet coding) 18
3.1 H.264/SVC之子頻帶/小波編碼的概觀 18
3.2 子頻帶編碼的架構 18
第 4 章 提出的子頻帶編碼 23
4.1 提出的子頻帶編碼的概觀 23
4.2 提出的子頻帶編碼架構 23
第 5 章 實驗結果 27
5.1 運算量的比較 27
5.2 客觀上的比較 29
5.3 主觀上的比較 44
第 6 章 結論 50
參考文獻 51

表目錄
表 3-1 9/7小波轉換之係數 21
表 3-2 子頻帶編碼的減少取樣濾波器係數 21
表 5-1 我們所提出的子頻帶編碼和原來的子頻帶編碼的運算量比較 28
表 5-2 進行模擬的影片與其設定 30
表 5-3 模擬CIF影片的量化參數 30
表 5-4 模擬4CIF影片的量化參數 30
表 5-5 平均峰值訊號雜訊比增加量 42

圖目錄
圖 1-1 H.264/AVC編碼架構圖 1
圖 2-1 可調影像編碼(SVC)的基本運作 5
圖 2-2 JSVM編碼架構圖 6
圖 2-3 階層式B畫面(hierarchical B-pictures) 8
圖 2-4 無延遲的階層式預測結構 9
圖 2-5 層級之間的預測(inter-layer prediction) 10
圖 2-6 在不同的層級中調整的方法 11
圖 2-7 裁剪的概念 12
圖 2-8 2維的離散小波轉換 14
圖 2-9 利用動作補償的時間濾波器(MCTF)的架構 15
圖 2-10 STP-tool的架構 16
圖 2-11 使用STP-tool方法的影像小波之架構 17
圖 3-1 H.264/SVC之子頻帶/小波編碼架構 19
圖 3-2 使用不同的減少取樣濾波器對於子頻帶編碼的實驗結果 21
圖 4-1 我們所提出之子頻帶/小波編碼架構 24
圖 5-1 運算量比較圖 28
圖 5-2 針對BUS影片的實驗結果 32
圖 5-3 針對FOOTBALL影片的實驗結果 33
圖 5-4 針對FOREMAN影片的實驗結果 34
圖 5-5 針對MOBILE影片的實驗結果 35
圖 5-6 針對CITY影片的實驗結果 36
圖 5-7 針對CREW影片的實驗結果 37
圖 5-8 針對HARBOUR影片的實驗結果 38
圖 5-9 針對ICE影片的實驗結果 39
圖 5-10 針對SOCCER影片的實驗結果 40
圖 5-11 平均峰值訊號雜訊比增加量的比較圖 42
圖 5-12 BUS影片的第1張畫面在主觀上的比較 45
圖 5-13 MOBILE影片的第46張畫面在主觀上的比較 46
圖 5-14 CREW影片的第3張畫面在主觀上的比較 48
參考文獻
[1]ITU-T Rec. & ISO/IEC 14496-10, "Advanced Video Coding for Generic Audiovisual Services," November 2007 (including SVC extension).
[2]I. E. G. Richardson, H.264 and MPEG-4 Video Compression - Video Coding for Next-generation Multimedia. Aberdeen, UK, 2003.
[3]ISO/IEC 15444-1, "Information Technology - JPEG 2000 image coding system: Core coding system," March 2000.
[4]S.-T. Hsiang, "Preliminary Results for Intra-frame Dyadic Spatial Scalable Coding Based on a Subband/Wavelet Filter Banks Framework," Doc. JVT-U133, October 2006.
[5]S.-T. Hsiang, "Intra-Frame Dyadic Spatial Scalable Coding Based on a Subband/Wavelet Framework for MPEG-4 AVC/H.264 Scalable Video Coding," in Image Processing, 2007. ICIP 2007. IEEE International Conference on, 2007, pp. I - 73-I - 76.
[6]H. Schwarz, D. Marpe, and T. Wiegand, "Overview of the Scalable Video Coding Extension of the H.264/AVC Standard," Circuits and Systems for Video Technology, IEEE Transactions on, vol. 17, pp. 1103-1120, 2007.
[7]J. Reichel, H. Schwarz, and M. Wien, "Joint Scalable Video Model JSVM-11," Doc. JVT-X202, July 2007.
[8]H. Schwarz, D. Marpe, and T. Wiegand, "Hierarchical B pictures," Doc. JVT-P014, July 2005.
[9]C. A. Segall and G. J. Sullivan, "Spatial Scalability Within the H.264/AVC Scalable Video Coding Extension," Circuits and Systems for Video Technology, IEEE Transactions on, vol. 17, pp. 1121-1135, 2007.
[10]I. Amonou, N. Cammas, S. Kervadec, and S. Pateux, "Optimized Rate-Distortion Extraction With Quality Layers in the Scalable Extension of H.264/AVC," IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, pp. 1186-1193, 2007.
[11]H. Kirchhoffer, H. Schwarz, and T. Wiegand, "CE 1: Simplified FGS," Doc. JVT-W090, April 2007.
[12]N. Adami, A. Signoroni, and R. Leonardi, "State-of-the-art and trends in scalable video compression with wavelet-based approaches," IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, pp. 1238-1255, September 2007.
[13]H. Schwarz, D. Marpe, and T. Wiegand, "MCTF and Scalability Extension of H.264/AVC," Proc. of PCS 2004, December 2004.
[14]H. Schwarz, D. Marpe, and T. Wiegand, "Comparison of MCTF and closed-loop hierarchical B pictures," Doc. JVT-P059, July 2005.
[15]H. Schwarz, D. Marpe, and T. Wiegand, "Analysis of Hierarchical B Pictures and MCTF," in Multimedia and Expo, 2006 IEEE International Conference on, 2006, pp. 1929-1932.
[16]J. M. Shapiro, "Embedded image coding using zerotrees of wavelet coefficients," Signal Processing, IEEE Transactions on, vol. 41, pp. 3445-3462, 1993.
[17]A. Said and W. A. Pearlman, "A new, fast, and efficient image codec based on set partitioning in hierarchical trees," Circuits and Systems for Video Technology, IEEE Transactions on, vol. 6, pp. 243-250, 1996.
[18]S.-T. Hsiang and J. W. Woods, "Embedded image coding using zeroblocks of subband/wavelet coefficients and context modeling," in Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on, 2000, pp. 662-665 vol.3.
[19]D. Taubman, "High performance scalable image compression with EBCOT," Image Processing, IEEE Transactions on, vol. 9, pp. 1158-1170, 2000.
[20]S.-J. Choi and J. W. Woods, "Motion-compensated 3-D subband coding of video," Image Processing, IEEE Transactions on, vol. 8, pp. 155-167, 1999.
[21]J. R. Ohm, "Three-dimensional subband coding with motion compensation," Image Processing, IEEE Transactions on, vol. 3, pp. 559-571, 1994.
[22]H.-W. Park and H.-S. Kim, "Motion estimation using low-band-shift method for wavelet-based moving-picture coding," Image Processing, IEEE Transactions on, vol. 9, pp. 577-587, 2000.
[23]N. Adami, M. Brescianini, R. Leonardi, and A. Signoroni, "SVC CE1:STool—A native spatially scalable approach to SVC," ISO/IEC JTC1/SC29/WG11, 70th MPEG Meeting, Palma de Mallorca, Spain, Tech. Rep. M11368, October 2004.
[24]R. Leonardi and S. Brangoulo, "Wavelet codec reference document and software manual v2.0," ISO/IEC JTC1/SC29/WG11, 74th MPEG Meeting, Nice, France, Tech. Rep. N7573, October 2005.
[25]S.-T. Hsiang and F. Ishtiaq, "CE5: Intra-frame Dyadic Spatial Scalable Coding Based on a Subband/Wavelet Filter Banks Framework," Doc. JVT-V084, January 2007.
[26]S.-T. Hsiang, "CE3: Intra-frame Dyadic Spatial Scalable Coding Based on a Subband/Wavelet Filter Banks Framework," Doc. JVT-W097, April 2007.
[27]S.-T. Hsiang, "CE1: SVC Intra-frame AVC/H.264 Sub-Band Coding (SBC)," Doc. JVT-X059, July 2007.
[28]M. Karczewicz and H. Chung, "Directional Scan for Subband/Wavelet Filter Banks Framework," Doc. JVT-X063, July 2007.
[29]G. Bjontegaard, "Calculation of average PSNR differences between RD-curves," Doc. VCEG-M33, April 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top