跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/05 12:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:汪國農
研究生(外文):Kuo-Nung Wang
論文名稱:微衛星姿態估測與控制次系統之設計及驗證
論文名稱(外文):Design and Validation of Micro Satellite Attitude Determination and Control Subsystem
指導教授:莊智清莊智清引用關係
指導教授(外文):Jyh-Ching Juang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:101
中文關鍵詞:姿態估測微衛星
外文關鍵詞:Micro SatelliteAttitude Determination
相關次數:
  • 被引用被引用:0
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
成功大學的CKUTEX (Cheng-Kung University Technology Experimental Satellite)微衛星計畫係國內自主發展之實驗型微衛星;CKUTEX微衛星之任務為藉由量測衛星與火箭分離階段之數據,包括分離時之位置、速度、姿態以及相關之推力以重建衛星與火箭分離時之推進與控制特性。本論文詳述CKUTEX微衛星姿態估測與控制次系統之設計與實現,並探討分離階段軌道與姿態重建之方式;為針對衛星軌道與姿態進行判定,CKUTEX微衛星將搭載GPS接收器酬載進行時間、位置與速度之量測,並搭載磁力計與太陽感測器於軌道量測資料以結合衛星動態模式進行衛星姿態判定。此外,由於小型發射載具於衛星脫離時有可能存在足以影響操控、通聯與充電之角速度,因此當衛星脫離發射載具後,將使用磁力計、磁力線圈控制姿態以穩定旋轉角速度;而在實驗階段CKUTEX微衛星將嘗試以微推進系統及相搭配之控制單元以控制衛星姿態,並依姿態估測技術估算其效能與各項參數。除了軟體模擬與分析,並於地面建置一套硬體測試迴路(Hardware in the Loop)以模擬太空環境與衛星動態,進而驗證CKUTEX微衛星姿態判別與控制演算法的效能及正確性。
The objective of the CKUTEX (Cheng-Kung University Technology Experimental Satellite) micro-satellite project is developing domestic experimental satellite technique. CKUTEX micro satellite will reconstruct the satellite and launcher’s propulsion and control characteristics by using the data collected at the satellite in separation stage including position, velocity, attitude and torque. The thesis describes the design and implementation of the CKUTEX micro-satellite attitude determination and control subsystem and investigates the method to reconstruct trajectory and attitude in separation stage. To determine the satellite orbit and attitude, the CKUTEX micro-satellite will carry a GPS receiver payload to measure time, position, and velocity. The magnetometer and the sun-sensor will be carried also to determine satellite’s attitude by combining measurement data and satellite dynamic model. In addition, the angular velocity that can affect control, communication, and recharging after separation may exist. To stabilize the angular rate, the satellite will use magnetometer and magnetic torque rods after separation from the launch vehicle. In the experiment stage, the CKUTEX micro-satellite would try to use micro-thruster system with corresponding control unit to control satellite attitude, and compute the performance and parameters with attitude estimation technique. In addition to software simulation and analysis, the hardware in the loop which can simulate space environment and satellite dynamics is also constructed to validate the performance and the correctness of the CKUTEX micro-satellite attitude determination and control algorithm.
Contents
摘要 i
Abstract ii
Contents v
List of Figures vii
List of Tables x
1. Introduction 1
1.1. Motivation 2
1.2. Organization 2
2. CKUTEX Satellite Introduction 4
2.1. Introduction of CKUTEX Mission 5
2.2. Satellite Bus 5
2.3. Satellite Payloads 10
2.4. Attitude Determination and Control Subsystem 12
3. Spacecraft Dynamics 14
3.1. Orbit Dynamics 15
3.1.1. Coordinate Definition 15
3.1.2. Keplerian Orbits 17
3.1.3. Coordinate Transformation 21
3.2. Attitude Dynamics 24
3.2.1. Kinematic Equations 24
3.2.2. Dynamic Equations 25
3.3. Environment Model 27
3.3.1. Magnetic Field Model 27
3.3.2. Sun Position Model 29
3.3.3. Disturbance Torques 30
3.3.3.1. Gravity Gradient 30
3.3.3.2. Aerodynamic Drag 31
3.3.3.3. Residual Dipole Moments 32
3.4. Sensor and Actuator Model 32
3.4.1. Magnetometer 33
3.4.2. Sun Sensor 33
3.4.3. IMU 34
3.4.4. Magnetic Torque Rods 35
4. ADCS Algorithm 36
4.1. Attitude Determination Algorithm 37
4.1.1. Extended Kalman Filter 37
4.1.2. EKF Implementation 41
4.1.3. Unscented Kalman Filter 45
4.1.4. UKF Implementation 48
4.1.5. Attitude Prediction Algorithm and Implementation 49
4.2. Attitude Control Algorithm 50
4.2.1. B-dot Control Algorithm 51
5. Simulation Result 53
5.1. Software Simulation Description 54
5.2. Software Simulation Result 60
5.2.1. Initial Mode 60
5.2.1.1. Environment 60
5.2.1.2. Attitude Information 63
5.2.1.3. Attitude Determination 65
5.2.1.4. Separation Prediction 74
5.2.2. Detumbling Mode 78
5.2.2.1. Attitude Information 79
5.2.2.2. Attitude Determination 81
6. Conclusions 88
6.1. Results Discussion 89
6.2. Future Research 90
Reference 91
Appendix 95
A. Hardware in the Loop Simulation Description 96

[1]C. J. Van Beusekom, R. Lisowski, J. M. Fulton, C. Morand “Three-axes Attitude Determination and Control System Design for Low-cost Micro-satellites” Proceedings of IEEE Aerospace Conference, Vol. 6, pp.6_2615 - 6_2628, 2003
[2]S. T. El M. Brembo, Sensor Modeling, Attitude Determination and Control for Micro-satellite, Master Thesis, Department of Engineering Cybernetics, NTNU, 2005
[3]J. Cemenska, Sensor Modeling and Kalman Filtering Applied to Satellite Attitude Determination, Master Thesis, Department of mechanical Engineering, UC Berkeley, 2005.
[4]Y. J. Cheon, J. H. Kim “Unscented Filtering in a Unit Quaternion Space for spacecraft attitude estimation” IEEE International Symposium on Industrial Electronics, pp.66 – 71, 4-7 June 2007.
[5]J. L. Crassidis, F. LandisMarkley “Unscented Filtering for Spacecraft Attitude Estimation” Journal of Guidance, Control, and Dynamics, Vol. 26, No. 4, 2003.
[6]J. L. Crassidis, F. Landis Markley, Yang Cheng “Survey of Nonlinear Attitude Estimation Methods” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 1, 2007.
[7]P. Fortescue, J. Stark, G. Swinerd, Spacecraft Systems Engineering, John Wiley & Sons, Inc, 2003.
[8]M. S. Grewal, A. P. Andrews, Kalman Filtering: Theory and Practice Using MATLAB, John Wiley & Sons, Inc, 2001.
[9]P. C. Hughes, Spacecraft Attitude Dynamics, John Wiley & Sons, Inc, 1986.
[10]J. C. Juang and J. J. Miau, , Y.Y. Liu, and B. C. Chen “Earthquake Research from Space: LEAP Microsatellite Design in Taiwan,” Asian Space Conference, Singapore, 2007.
[11]J. C. Juang and J. J. Miau, Y.Y. Liu, and B. C. Chen “Overview of the LEAP: A University MicroSatellite Program at NCKU,” Universat-2007 Symposium, Taiwan, 2007.
[12]S. J. Julier, and J. K. Uhlmann “A New Extension of the Kalman Filter to Nonlinear Systems”, Proceedings Aerosense: The 11th Int. Symposium on Aerospace/Defense Sensing, Simulation and Controls, pp. 182-193, 1997.
[13]M. H. Kaplan, Modern Spacecraft Dynamics & Control, John Wiley & Sons, Inc, 1976
[14]F. L. Lewis, Applied Optimal Control and Estimation – Digital Design and Implementation, Prentice Hall and Texas Instruments, 1992
[15]H. Li, Z. W. Sun, S. J. Zhang “Satellite Attitude Estimation UKF Algorithm Based on Star-Sensor” IMACS Multiconference on "Computational Engineering in Systems Applications"(CESA), 2006.
[16]G. F. Ma, X. Y. Jiang “Unscented Kalman Filter for Spacecraft Attitude Estimation and Calibration using Magnetometer Measurements” Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, pp. 18-21, 2005.
[17]K. L. Makovec, A Nonlinear Magnetic Controller for Three-Axis Stability of Nanosatellites, Master Thesis, Department of Aerospace Engineering, Virginia Polytechnic Institute and State University, 2001.
[18]J. M. Mendel, Lessons in Estimation Theory for Signal Processing, Communications, and Control, Prentice Hall, 1995.
[19]R. van der Merwe and E. A. Wan “The unscented Kalman filter for nonlinear estimation” Proceedings IEEE Symposium Adaptive Syst. Signal Processing, Commun. Control (AS-SPCC), Lake Louise, Alberta, Canada, pp. 153–158, 2000.
[20]A. Scholz, Implementation of Advanced Attitude Determination and Control Techniques into a Nanosatellite, Master Thesis, Department of Aerospace Engineering, NCKU, 2008.
[21]M. J. Sidi, Spacecraft Dynamics and Control: a practical engineering approach, Cambridge University Press, 1997.
[22]E. Silani, M. Lovera “Magnetic spacecraft attitude control: a survey and some new results” Control Engineering Practice, Volume 13, Issue 3, pp. 357-371, March 2005.
[23]B. O. Sunde, Attitude Determination for the Student Satellite nCubeII: Kalman Filter, Master Dissertation, Department of Engineering Cybernetics, NTNU, 2003.
[24]J. K. Tu, S. H. Wu, C. C. Chu “Platform for Attitude Control Experiment (PACE) An Experimental Three-Axis Stabilized CubeSat,” Proceedings 18th AIAA/USU Conference on Small Satellites, SSC-VII, Utah State University, Logan Utah, USA, August 9-12, 2004.
[25]P. Wang, Y. B. Shtessel and Y. Q. Wang “Satellite Attitude Control Using only Magnetorquers,” Proceedings of the Thirtieth Southeastern, System Theory, pp. 500-504, 1998.
[26]J. R. Wertz, Spacecraft Attitude Determination and Control, Kluwer Academic Publishers, 1978.
[27]R.Wisniewski, and M. Blanke, “Fully magnetic attitude control for spacecraft subject to gravity gradient.” Automatica Volume 35, Issue 7, pp. 1201–1214, 1999.
[28]P. Zarchan, Fundamentals of Kalman Filtering – A Practical Approach, American Institute of Aeronautics and Aeronautics, Inc, 2000.
[29]吳世驊,「皮米級衛星姿態控制次系統之設計及實現」, 成功大學電機工程學系碩士論文, 2006
[30]孫煜明,「微微衛星姿態控制次系統之設計及模擬」,成功大學電機工程學系碩士論文, 2003
[31]李愷倫,「皮米衛星姿態判定與控制次系統之設計與測試」,成功大學航空太空工程研究所碩士論文, 2004
[32]張森喬,「衛星姿態控制即時模擬與原型控制器快速製作」,成功大學電機工程學系碩士論文, 2000
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top