跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/05 20:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃筱絨
研究生(外文):Xiao-Rong Huang
論文名稱:CCFL用新穎高色彩飽和度綠光螢光材料之製備及其發光特性研究
論文名稱(外文):Preparations and Luminescence Properties of the Novel Phosphors with High Color Gamut for Cold Cathode Fluorescent Lamp
指導教授:朱聖緣朱聖緣引用關係
指導教授(外文):Sheng-yuan Chu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:147
中文關鍵詞:鉭酸鹽色彩飽和度交叉緩解鋁酸鹽螢光粉
外文關鍵詞:cross-relaxationcolor gamutTantalatephosphorAluminate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究之目的在於開發顯示與照明通用的新穎、高發光效率、高色純度以及高色彩飽和度CCFL用綠光螢光材料。我們利用固態反應法來合成Tb3+活化的鉭酸鹽與Mn2+活化的鋁酸鹽螢光粉,兩者均被視為有發展潛力的CCFL用綠光螢光粉。在Tb3+活化的鉭酸鹽中,我們製備了Zn3–3xTb2xTa2O8、Ca3–3/2yTbyTa2O8和La1–zTbzTaO4螢光粉,最佳的摻雜濃度對後兩者而言為y = z = 0.05;在波長為254 nm的激發下,兩者都發射Tb3+之5D4 → 7F5躍遷的綠光(548、542 nm),其強度大於已有被文獻發表過之Zn2.997Tb0.002Ta2O8螢光粉的發光強度,而La0.95Tb0.05TaO4螢光粉的強度最高,其最佳的煆燒溫度為1450 oC。我們也討論了有關於Tb3+之5D3和5D4能階的交叉緩解和非輻射緩解現象。在Mn2+活化的鋁酸鹽中,我們合成了Ce0.67Tb0.33Mg1–wMnwAl11O19螢光粉,其最佳的Mn2+摻雜濃度、煆燒溫度及H3BO3添加量分別為w = 0.12、1450 oC及1 wt%。在波長為254 nm的激發下,其發射Mn2+之4T1 → 6A1躍遷的綠光(517 nm)。我們也探討了在Ce3+、Tb3+和Mn2+之間的能量轉移現象。
此一新穎CCFL用綠光螢光粉:Ce0.67Tb0.33Mg0.88Mn0.12Al11O19,其具備化性穩定、高發光效率、優良色純度以及色彩飽和度佳等優勢。
The purpose of this study is to develop novel CCFL green phosphors with the properties of high stability, high luminescent efficiency, excellent color purity and optimum color gamut which can be well applied to lighting and display. We utilized the solid-state reaction method to synthesize Tb3+ activated Tantalate and Mn2+ activated Aluminate phosphors which are regard as the potential CCFL green phosphors. In Tb3+ activated Tantalate, Zn3–3xTb2xTa2O8, Ca3–3/2yTbyTa2O8 and La1–zTbzTaO4 phosphors are prepared. The optimum Tb3+ contents are y = z = 0.05 for the latter two. They emitted green light due to 5D4 → 7F5 transition of Tb3+ at 548 and 542 nm under excitation with 254 nm. The emission intensities are both higher than that of Zn2.997Tb0.002Ta2O8 phosphor (which has been) reported and is highest for La0.95Tb0.05TaO4 phosphor. The optimum calcine temperature is 1450 oC for the phosphor. We also discussed the cross-relaxation and non-radiative relaxation which are related to the 5D3 and 5D4 energy level in Tb3+ ions. In Mn2+ activated Aluminate, Ce0.67Tb0.33Mg1–wMnwAl11O19 phosphors are synthesized. The optimum Mn2+ content, calcine temperature and amount of H3BO3 are w = 0.12, 1450 oC and 1 wt%. It emitted green light due to 4T1 → 6A1 transition of Mn2+ at 517 nm under excitation with 254 nm. We also discussed the energy transfer among Ce3+, Tb3+ and Mn2+ ions.
The novel green CCFL phosphor Ce0.67Tb0.33Mg0.88Mn0.12Al11O19 emitted green light with the properties of stable, highest luminescent efficiency, excellent color purity and optimum color gamut.
Abstract I
Chinese Abstract II
Acknowledgements III
Contents IV
Table Captions VII
Figure Captions IX

Chapter 1 Introduction 1
1-1 Background of this study 1
1-2 Motivation and purpose of this study 2

Chapter 2 Theory 5
2-1 Luminescence 5
2-1-1 Category of the luminescence 5
2-1-2 Classification of photoluminescence in solids 5
2-1-3 Fluorescence and phosphorescence 7
2-2 Principles of luminescence 8
2-2-1 Crystalline Field theory 8
2-2-2 Selection rule 9
2-2-3 Allowed and forbidden transitions 10
2-3 Non-radiative transitions 11
2-3-1 Concentration quenching 11
2-3-2 Cross-relaxation 12
2-3-3 Energy transfer 13
2-4 Phosphors 15
2-4-1 Absorption, excitation and relaxation of the phosphors 17
2-4-2 Phosphor design 19
2-4-3 Principles of the luminescence center 22
2-4-3-1 Trivalent rare earth ions 22
2-4-3-2 Transition metal ions 25
2-5 Applications of Phosphors 25
2-5-1 Cold cathode fluorescent lamp (CCFL) [28] 28
2-5-2 The estimate of Color Gamut 29

Chapter 3 Experiments 32
3-1 Experimental chemicals and apparatuses 32
3-1-1 Experimental chemicals 32
3-1-2 Experimental apparatuses 32
3-2 Experimental procedures 32
3-2-1 Tantalate phosphors 32
3-2-1-1 Zn3Ta2O8: Tb3+ phosphor 32
3-2-1-2 Ca3Ta2O8: Tb3+ phosphor 33
3-2-1-3 LaTaO4: Tb3+ phosphor 34
3-2-2 Aluminate phosphors 34
3-2-2-1 Ce0.67Tb0.33Mg1–wMnwAl11O19 phosphor 34
3-2-2-2 Ce0.67Tb0.33Mg0.88Mn0.12Al11O19 phosphor 35
3-3 Measurement system 36
3-3-1 X-Ray diffractometer 36
3-3-2 Fluorescence spectrophotometer 36
3-3-3 UV-Vis diffuse reflectance spectrophotometer 36

Chapter 4 Results and discussion 37
4-1 Characterizations of Tb3+ activated tantalate phosphors 37
4-1-1 The Zn3Ta2O8: Tb3+ system 37
4-1-1-1 The influence of doping concentration on PL and PLE spectra 37
4-1-1-2 The influence of doping concentration on Decay curve 39
4-1-1-3 The influence of doping concentration on CIE chromaticity coordinates 41
4-1-1-4 Structure analysis 42
4-1-2 The Ca3Ta2O8: Tb3+ system 49
4-1-2-1 The influence of doping concentration on PL, PLE and Absorption spectra 49
4-1-2-2 Concentration effect on the cross-relaxation mechanism between Tb3+ ions 52
4-1-2-3 The influence of doping concentration on Decay curve 55
4-1-2-4 The influence of doping concentration on CIE chromaticity coordinates 57
4-1-2-5 Structure analysis 58
4-1-3 The LaTaO4: Tb3+ system 67
4-1-3-1 The influence of doping concentration on the properties of phosphor 67
4-1-3-2 The influence of calcine temperature on the properties of phosphor 81
4-1-4 Comparison among Tb3+ activated tantalate phosphors 94
4-1-4-1 PL spectra contrast 94
4-1-4-2 Host effect on non-radiative relaxation mechanism of Tb3+ ion 95
4-1-4-3 CIE chromaticity coordinates contrast 96
4-2 Characterizations of Mn2+ activated Aluminate phosphors 99
4-2-1 The influence of doping concentration on the properties of phosphor 99
4-2-1-1 PL and PLE analysis 99
4-2-1-2 Decay curve analysis 102
4-2-1-3 CIE chromaticity coordinates 104
4-2-1-4 XRD analysis 105
4-2-2 The influence of calcine temperature and flux amount on the properties of phosphor 113
4-2-2-1 The optimum amount of flux at calcine temperature is 1450 oC 113
4-2-2-2 The optimum amount of flux at calcine temperature is 1500 oC 118
4-2-2-3 The optimum amount of flux at calcine temperature is 1550 oC 122
4-2-2-4 The optimum calcine temperature and amount of flux 126
4-2-3 Energy transfer mechanism among Ce3+, Tb3+ and Mn2+ ions 131
4-2-3-1 Prove that the presence of energy transfer process 131
4-2-3-2 Speculate that the type of energy transfer mechanism 131
4-3 Comparison with commercial CCFL green phosphors 135
4-3-1 PL spectra contrast 135
4-3-2 CIE chromaticity coordinates contrast 136

Chapter 5 Conclusions and Future Prospect 140
5-1 Conclusions 140
5-2 Future prospect 141

References 142
[1] Shun-ichi Kubota, Tadashi Endo, Hirotsugu Takizawa, Masahiko Shimada, “Synthesis and Luminescence Properties of La1–xTbxTa7O19 (0 < x ≦ 1)”, Journal of The Electrochemical Society., Vol. 142, No. 12, 4269−4272, 1995.
[2] Huan Jiao, Fuhui Liao, Shujian Tian, Xiping Jing, “Luminescent Properties of Eu3+ and Tb3+ Activated Zn3Ta2O8”, Journal of The Electrochemical Society, Vol. 150, No. 9, H220−H224, 2003.
[3] Xiaolin Liu, Kun Han, Mu Gu, Lihong Xiao, Chen Ni, Shiming Huang, Bo Liu, “Effect of codopants on enhanced luminescence of GdTaO4:Eu3+ phosphors”, Solid State Communications, Vol. 142, 680−684, 2007.
[4] Mihail Nazarov, Boris Tsukerblat, Clare Chisu Byeon, Ivan Arellano, Elisabeth-Jeanne Popovici, Do Young Noh, “Polarization selection rules and optical transitions in terbium activated yttrium tantalate phosphor under x-ray, vacuum-ultraviolet, and ultraviolet excitations”, Applied Optics, Vol. 48, No. 1, 17−21, 2009.
[5] Bo Liu, Mu Gu, Xiaolin Liu, Kun Han, Shiming Huang, Chen Ni, Guobin Zhang, Zeming Qi, “Enhanced luminescence through ion-doping-induced higher energy phonons in GdTaO4:Eu3+ phosphor”, Applied Physics Letters, Vol. 94, No. 061906, 061906-1−061906-3, 2009.
[6] Junying Zhang, Lin Zhang, Zilong Tang, Zhongtai Zhang, Tianmin Wang, “Luminescent properties of (Ce0.67Tb0.33)MnxMg1–xAl11O19 phosphor in VUV region”, Ceramics International, Vol. 29, 583−586, 2003.
[7] Dae Soo Jung, Seung Kwon Hong, Hyo Jin Lee, Yun Chan Kang, “Effect of boric acid flux on the characteristics of (CeTb)MgAl11O19 phosphor particles prepared by spray pyrolysis”, Journal of Alloys and Compounds, Vol. 398, 309−314, 2005.
[8] Dae Soo Jung, Seung Kwon Hong, Seo Hee Ju, Hyo Jin Lee, Yun Chan Kang, “(CeTb)MgAl11O19 Phosphor Particles Prepared by Spray Pyrolysis from Spray Solution Containing Citric Acid and Ethylene Glycol”, Japanese Journal of Applied Physics, Vol. 44, No. 7A, 4975−4978, 2005.
[9] Seung Kwon Hong, Dae Soo Jung, Seo Hee Ju, Hye Young Koo, Yun Chan Kang, “The Effect of flux types on the formation of green light emitting phosphor particles with spherical shape and filled morphology”, Journal of Materials Science: Materials in Electronics, No. 17, 341−346, 2006.
[10] Dae Soo Jung, Seung Kwon Hong, Seo Hee Ju, Hye Young Koo, Yun Chan Kang, “Direct Synthesis of High-Brightness (CeTb)MgAl11O19 Phosphor Particles by Spray Pyrolysis with Boric Acid Flux”, Japanese Journal of Applied Physics, Vol. 45, No. 1A, 116−120, 2006.
[11] P.Y. Jia, M. Yu, J. Lin, “Sol-gel deposition and luminescent properties of LaMgAl11O19:Ce3+/Tb3+ phosphor films”, Journal of Solid State Chemistry, Vol. 178, 2734−2740, 2005.
[12] K. Kang, S.H. Huang, X.W. Huang, W.D. Zhuang, F.T. You, S.S. Zhang, H.Q. He, “Preparation for a new green-emitting phosphor for cold cathode fluorescent lamp”, Journal of Luminescence, Vol. 122, No. 123, 804−807, 2007.
[13] Hongpeng You, Yanhuan Song, Guang Jia, Guangyan Hong, “Energy transfer from Tb3+ to Mn2+ in LaMgAl11O19:Tb, Mn phosphors ”, Optical Materials, Vol. 31, 342−345, 2008.
[14] 盧清一、楊素華,「釔鋁石榴石螢光粉的製備及藉由傳導披覆改善螢光粉之發光特性」,國立高雄應用科技大學電子工程系,碩士論文,2007。
[15] J. García Solé, L.E. Bausá, D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids, John Wiley & Sons, Ltd, 2005.
[16] D. R. Vij, Luminescence of Solids, Plenum Press, 1998.
[17] 溫政宏、朱聖緣,「鈣鈦礦(Na,K)(Nb,Ta)O3:Er 螢光材料之研製及其螢光性質研究」,國立成功大學電機工程學系,博士論文,2006。
[18] Skoog, Holler, Nieman, Principles of Instrumental analysis, Saunders college Publishing, 1992.
[19] 徐維澤、呂宗昕,「奈米釔鋁柘榴石螢光粉之製備及同步輻射分析」,
國立台灣大學化學工程研究所,碩士論文,2003。
[20] B. Henderson, Optical spectroscopy of inorganic solids, Clarendon Oxford, 1989.
[21] 洪信鉦、呂宗昕,「釔鋁石榴石與鈦酸鋇粉體之溶液法製備與特性分
析」,國立台灣大學化學工程研究所,碩士論文,2002。
[22] Cees Ronda, Luminescence: From Theory to Applications, WILEY-VCH, 2008.
[23] A.H. Kitai, Solid State Luminescence: Theory, materials and devices, Chapman & Hall, 1993.
[24] 蘇勉增、吳世康,“發光材料”,第四卷,1−39。
[25] 呂昊穎、朱聖緣,「氧化鋅及硫化鋅奈米螢光材料之研製及其光電特性之研究」,國立成功大學電機工程研究所,博士論文,2005。
[26] G. Blasse, B.C Grabmaier, Luminescent Materials, Springer-Verlag Berlin Heidelberg, 1994.
[27] Michael Gaft, Renata Reisfeld, Gérard Panczer, Luminescence Spectroscopy of Minerals and Materials, Springer-Verlag Berlin Heidelberg, 2005.
[28] William M. Yen, Shigeo Shionoya, Hajime Yamamoto, PHOSPHOR HANDBOOK, CRC Press, 2007.
[29] http://en.wikipedia.org/wiki/CIE_1931_color_space
[30] Meng Liang, Manning Fan, Debo Guo, Guangyi Liu, Guohong Wang, Fuhua Yang, Liangchen Wang, Yiping Zeng, Jinmin Li, “Research on Color Matching of LED Backlight for Large-Color-Gamut LCD Application”, Proceedings of SPIE, Vol. 6841, 68410Y-1−68410Y-5.
[31] http://tw.myblog.yahoo.com/eater-0215/article?mid=1780&prev=1826&
next=1763
[32] http://www.ipctechnology.com/support/techinfo/color_gamut.htm
[33] Liya Zhou, Wallace C.H. Choy, Jianxin Shi, Menglian Gong, Hongbin Liang, “A novel green emitting phosphor Ca1.5Y1.5Al3.5Si1.5O12:Tb3+”, Materials Chemistry and Physics, Vol. 100, 372−374, 2006.
[34] Zhouyun Ren, Chunyan Tao, Hua Yang, Shouhua Feng, “A novel green emitting phosphor SrAl2B2O7:Tb3+”, Materials Letters, Vol. 61, 1654−1657, 2007.
[35] B. Vengala Rao, U. Rambabu, S. Buddhudu, “Analysis of green luminescent Tb3+:Ca4GdO(BO3)3 powder phosphor”, Physica B: Condensed Matter, Vol. 391, 339−343, 2007.
[36] Xinmin Zhang, Jianhui Zhang, Lifang Liang, Qiang Su, “Luminescence of SrGdGa3O7:RE3+(RE = Eu, Tb) phosphors and energy transfer from Gd3+ to RE3+”, Materials Research Bulletin, Vol. 40, 281−288, 2005.
[37] Chunbo Liu, Guangbo Che, Zhanlin Xu, QingweiWang, “Luminescence properties of a Tb3+ activated long-afterglow phosphor”, Journal of Alloys and Compounds, Vol. 474, 250−253, 2009.
[38] Q.Y. Zhang, K. Pita, C.H. Kam, “Sol-gel derived zinc silicate phosphor films for full-color display applications”, Journal of Physics and Chemistry of Solids, Vol. 64, 333−338, 2003.
[39] Jinsheng Liao, Bao Qiu, Huasheng Lai, “Synthesis and luminescence properties of Tb3+:NaGd(WO4)2 novel green phosphors”, Journal of Luminescence, Vol. 129, 668−671, 2009.
[40] 林心雁、張炎輝,「Mg2–xCaxLaTaO6 (x=0 ~ 2.0)系光致發光特性研究」,國立成功大學材料科學及工程學系,碩士論文,2008。
[41] Alison Abreu da Silva, Marco Auré lio Cebim, Marian Rosaly Davolos, “Excitation mechanisms and effects of dopant concentration in Gd2O2S:Tb3+ phosphor”, Journal of Luminescence, Vol. 128, 1165−1168, 2008.
[42] Yu-Chun Li, Yen-Hwei Chang, Yu-Feng Lin, Yee-Shin Chang, Yi-Jing Lin, “Green-Emitting Phosphor of LaAlGe2O7:Tb3+ under Near-UV Irradiation”, Electrochemical and Solid-State Letters, Vol. 9, No. 8, H74−H77, 2006.
[43] Zhendong Hao, Jiahua Zhang, Xia Zhang, Shaozhe Lu, Xiaojun Wang, “Blue-Green-Emitting Phosphor CaSc2O4:Tb3+: Tunable Luminescence Manipulated by Cross-Relaxation”, Journal of The Electrochemical Society, Vol. 156, No. 3, H193−H196, 2009.
[44] Yee-Shin Chang, Hui-Jan Lin, Yu-Chun Li, Yin-Lai Chai, Yeou-Yih Tsai, “Synthesis and luminescent properties of Tb3+-activated yttrium indium germanate phosphor”, Journal of Solid State Chemistry, Vol. 180, 3076−3081, 2007.
[45] Yu-Chun Li, Yee-Shin Chang, Yu-Cheng Lai, Yi-Jing Lin, Chih-Hao Laing, Yen-Hwei Chang, “Luminescence and energy transfer properties of Gd3+ and Tb3+ in LaAlGe2O7”, Materials Science and Engineering B, Vol. 146, 225–230, 2008.
[46] Van Krevel, J.W.H., On New Rare-earth Doped M–Si–Al–O–N Materials, Luminescence Properties and Oxidation Resistance, Eindhoven University of Technology, PhD Thesis, 2000.
[47] G. Blasse, “On the Luminescence of LaTaO4”, physica status solidi (a), Vol. 12, K17−K19, 1972.
[48] Junying Zhang, Zhongtai Zhang, Zilong Tang, Yuanhua Lin, “Mn2+ luminescence in (Ce,Tb)MgAl11O19 phosphor”, Materials Chemistry and Physics, Vol. 72, 81−84, 2001.
[49] G. Blasse, “Energy transfer in oxidic phosphors”, Philips. Rep., Vol. 24, No. 131, 1969.
[50] 徐敘瑢、蘇勉曾,「發光學與發光材料」,化學工業出版社,2004。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top