跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 23:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳致緯
研究生(外文):Jhih-Wei Wu
論文名稱:具姿態估測之遠端監控/遙控與停車輔助功能之智慧型載具
論文名稱(外文):An Intelligent Vehicle with Posture Estimation based Remote Monitoring/Control and Parking Assist Function
指導教授:王振興王振興引用關係
指導教授(外文):Jeen-Shing Wang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:151
中文關鍵詞:嵌入式系統慣性感知智慧型車型載具類神經模糊控制器自動倒車入庫遠端監控
外文關鍵詞:Inertial moduleIntelligent vehicleNeuro-fuzzy controlRemote monitoringEmbedded systemAutomatic reverse parking
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本論文利用一部仿實車之智慧型車型載具,實現了具姿態估測之遠端監控/遙控系統與自動倒車輔助功能。該智慧型車型載具是由三大部分組成,其採用嵌入式系統為運算與控制核心,並自行設計周邊控制電路以控制車體機構,及利用區域控制網路(Controller Area Network Bus, CAN BUS)整合周邊感知器資訊,實現了具周邊感知能力及可程式控制之智慧型車型載具。遠端監控/遙控系統是利用慣性感知訊號搭配姿態估測演算法,估測出遠端操控平台之姿態角,並將姿態之變化轉換成合適的控制命令,將其利用無線網路傳送到智慧型車型載具上,使用者僅需藉由旋轉及傾斜操控平台,即可控制遠端車子之速度與行駛方向,及改變攝影機之視線;並結合即時無線影像傳輸,接收影像資訊,讓使用者無論在何時何地皆能自在地監控及操控遠端載具。自動倒車輔助功能是使用雷射測距儀來掃描停車週邊環境資訊,並利用倒車空間擷取演算法辨識出停車參考目標,以得到車子與停車位之相對位置與姿態,並利用類神經模糊控制器學習使用者倒車機制,讓駕駛者可以快速且輕鬆地將車子停入特定車庫中,最後經由模擬與實際執行之結果來呈現遠端監控/遙控與停車輔助系統之性能。
This thesis presents an intelligent vehicle with remote monitoring/control functions and automatic reverse parking function. There are three main components in the intelligent vehicle: an embedded system serving as the central control unit of the vehicle, motor driving circuits for controlling the speed and orientation of the vehicle, and a controller area network (CAN) bus that integrate peripheral sensors with the embedded system to realize the intelligence of the vehicle. The remote monitoring/control system integrates an embedded system and an inertial module to realize a portable remote motoring/control platform. This portable platform can receive the video signal captured by the camera installed on the vehicle, and can display the video on its monitor simultaneously. In addition, the portable platform can remotely control the orientation of the camera for different view angles, and the speed as well as the direction of the vehicle by simply adjusting the posture of the portable platform. This function allows users of the platform to remote monitor and control the vehicle easily anytime, anywhere. The reverse parking function is implemented by a parking space extraction algorithm and a neuro-fuzzy controller. The parking space extraction algorithm uses a laser range finder (LRF) to scan the environment information of a parking lot for obtaining the position and orientation between a vehicle and the parking lot. The neuro-fuzzy controller is capable of leaning the operating behavior of a driver for parking the vehicle to a specific garage. This function helps the driver to park their vehicle quickly and effortlessly. The experimental results show satisfactory performance of the proposed functions.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 vi
表目錄 viii
圖目錄 ix
第1章 緒論 1-1
1.1 研究背景與動機 1-1
1.2 文獻探討 1-2
1.3 研究目的 1-5
1.4 論文架構 1-6
第2章 硬體架構 2-1
2.1 硬體平台與相關周邊控制電路 2-3
2.1.1 車型載具 2-3
2.1.2 影像伺服平台 2-5
2.1.3 周邊硬體電路及微控制器 2-7
2.1.3.1 周邊控制與資訊擷取電路 2-7
2.1.3.2 周邊電路微控制器 2-9
2.1.3.3 前輪轉向驅動與控制電路 2-10
2.1.3.3.1 HIP4080A全橋式電路驅動晶片 2-10
2.1.3.3.2 功率電晶體 2-11
2.1.3.4 後輪速度擷取與控制電路 2-12
2.1.3.5 影像伺服平台控制電路 2-13
2.2 嵌入式系統平台 2-14
2.2.1 Create-XScale-PXA270開發平台 2-14
2.2.2 Liod270-51Board開發板 2-16
2.3 無線網路傳輸硬體介面 2-17
2.3.1 USB WLAN 無線網卡 2-17
2.3.2 WL-379F CF介面無線網卡 2-18
2.4 周邊感知元件 2-19
2.4.1 網路攝影機 2-19
2.4.2 雷射測距儀 2-20
2.4.3 轉角感知器 2-21
2.4.4 可變磁阻元件 2-22
2.4.5 慣性感知模組 2-23
第3章 可攜式遠端監控/遙控系統 3-1
3.1 無線網路即時影像傳輸 3-2
3.1.1 網路攝影機影像擷取與影像壓縮 3-4
3.1.2 Linux網路傳輸應用程式 3-7
3.1.3 無線網卡驅動 3-9
3.2 姿態估測與遠端遙控方法 3-10
3.2.1 三軸加速度計校正 3-10
3.2.2 座標轉換與姿態估測 3-11
3.2.3 遠端遙控控制方法 3-15
第4章 自動倒車輔助系統 4-1
4.1 車型載具運動學分析 4-1
4.1.1 車輛轉向機構 4-2
4.1.2 車型載具運動學模型 4-3
4.1.3 車型載具位置與姿態角估測 4-6
4.2 倒車空間參考線偵測演算法 4-8
4.2.1 資料前處理 4-9
4.2.2 直角轉角偵測 4-12
4.2.3 主要參考轉角辨識 4-15
4.2.4 倒車參考線角度計算與座標轉換 4-16
4.3 類神經模糊倒車學習控制器 4-19
4.3.1 倒車機制分析與訓練資料 4-19
4.3.2 類神經模糊控制器設計 4-21
第5章 實驗環境建置 5-1
5.1 前輪轉向系統控制器設計 5-1
5.2 周邊資訊整合 5-4
5.3 嵌入式系統軟體開發環境 5-6
5.4 PIC18F458微控制器軟體開發環境 5-9
5.5 CAN Bus控制器驅動程式 5-10
5.5.1 同步序列埠傳輸協定 5-10
5.5.2 泛用輸入輸出腳位設定 5-11
5.5.3 MCP2515驅動程式開發 5-13
第6章 實驗結果 6-1
6.1 遠端監控/搖控實驗結果 6-1
6.1.1 資料前處理 6-1
6.1.2 姿態估測結果 6-4
6.1.3 遠端監控與遙控載具之操控結果 6-6
6.2 自動倒車輔助系統實驗結果 6-14
6.2.1 自動倒車軟體模擬平台 6-14
6.2.2 自動倒車演算法驗證平台 6-19
6.2.3 嵌入式系統移植 6-20
6.2.4 實驗結果呈現 6-21
第7章 結論與未來工作 7-1
7.1 結論 7-1
7.2 未來工作 7-2
參考文獻 8-1
[1] R. Siegwart, Introduction to Autonomous Mobile Robots. MIT Press, 2004.
[2] Unmanned Ground Combat Vehicle Overview, http://www.rec.ri.cmu.edu/projects- /ugcv/index.htm
[3] DARPA Urban Challenge, http://www.darpa.mil/grandchallenge/index.asp
[4] Controllers at Nintendo, http://www.nintendo.com/wii/what/controllers
[5] Apple - iPhone, http://www.apple.com/iphone/
[6] LS Exterior-Advanced Parking Guidance System, http://www.lexus.com/models/LS/- features/exterior/advanced_parking_guidance_system.html
[7] B. Potter, “VW Debuts Park Assist Vision Concept,” http://www.worldcarfans.com/- 10804221484/vw-debuts-park-assist-vision-concept
[8] 財團法人車輛測試研究中心(ARTC), http://www.artc.org.tw/
[9] T. Dawson, “Safe Parking Using the BMW Remote Park Assis,” http://www.buz- zle.com/editorials/8-14-2006-105392.asp, 2006.
[10] R. C. Luo and T.M. Chen, “Development of a multibehavior-based mobile robot for remote supervisory control through the Internet,” IEEE/ASME Trans. Mechatronics, vol. 5, no. 4, pp. 376-385, 2000.
[11] D.-Y. Ju, R. Zhong, and M. Takahashi, “Development of remote control and monitor system for autonomous mobile robot based on virtual cell phone,” in Proc. Int. Conf. on Innovative Computing, Information and Control, 2008, pp. 291-291.
[12] C. Guo and E. Sharlin, “Exploring the use of tangible user interfaces for human-robot interaction: A comparative study,” in Proc. Computing Systems Conf. on Human Factors, 2008, pp. 121-130.
[13] M. Lapping-Carr, O. C. Jenkins, D. H. Grollman, J. N. Schwertfeger, and T. R. Hinkle, “Wiimote interfaces for lifelong robot learning,” in Spring Symposium on American Association for Artificial Intelligence, 2008, pp. 61-66.
[14] T. Schlömer, B. Poppinga, N. Henze, and S. Boll, “Gesture recognition with a Wii controller,” in Proc. Int. Conf. on Tangible and Embedded Interaction, 2008, pp. 11-14.
[15] S. J. Spencer, J. Klein, K. Minakata, V. Le, J. E. Bobrow, and D. J. Reinkensmeyer, “A low cost parallel robot and trajectory optimization method for wrist and forearm rehabilitation using the Wii,” in Int. Conf. on Biomedical Robotics and Biomechatronics, 2008, pp. 869-874.
[16] K. Jiang and L. D. Seneviratne, “A sensor guided autonomous parking system for nonholonomic mobile robots,” in Proc. IEEE Int. Conf. on Robotics and Automation, vol. 311, 1999, pp. 311-316.
[17] Y. Zhao and E. G. Collins Jr., “Robust automatic parallel parking in tight spaces via fuzzy logic,” Journal of Robotics and Autonomous Systems, vol. 51, no. 2-3, pp. 111-127, 2005.
[18] J. Xu, G. Chen, and M. Xie, “Vision-guided automatic parking for smart car,” in Proc. IEEE Symposium on Intelligent Vehicles, 2000, pp. 725-730.
[19] G. J. Ho, S. K. Dong, J. Y. Pal, and K. Jaihie, “Parking slot markings recognition for automatic parking assist system,” in Proc. IEEE Symposium on Intelligent Vehicles, 2006, pp. 106-113.
[20] Y.-C. Liu, K.-Y. Lin, and Y.-S. Chen, “Bird's-eye view vision system for vehicle surrounding monitoring,” in Proc. Int. Conf. on Robot Vision, 2008, pp. 207-218.
[21] A. Schanz, A. Spieker, and K.-D. Kuhnert, “Autonomous parking in subterranean garages-a look at the position estimation,” in Proc. IEEE Symposium on Intelligent Vehicles, 2003, pp. 253-258.
[22] H. G. Jung, Y. H. Cho, P. J. Yoon, and J. Kim, “Scanning laser radar-based target position designation for parking aid system,” IEEE Trans. Intelligent Transportation Systems, vol. 9, no. 3, pp. 406-424, 2008.
[23] M. Wada, K. S. Yoon, and H. Hashimoto, “Development of advanced parking assistance system,” IEEE Trans. Industrial Electronics, vol. 50, no. 1, pp. 4-17, 2003.
[24] E. Szadeczky-Kardoss and B. Kiss, “Path planning and tracking control for an automatic parking assist system,” Springer Tracts in Advanced Robotics, vol. 44, pp. 175-184, 2008.
[25] M. B. Oetiker, G. P. Baker, and L. Guzzella, “A navigation-field-based semi-autonomous nonholonomic vehicle-parking assistant,” IEEE Trans. Vehicular Technology, vol. 58, no. 3, pp. 1106-1118, 2009.
[26] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, “A stable tracking control method for an autonomous mobile robot,” in Proc. IEEE Int. Conf. on Robotics and Automation, 1990, pp. 384-389.
[27] D. Lyon, “Ad-hoc and derived parking curves,” in Proc. of SPIE, 1991, pp. 39-49.
[28] S. Fleury, P. Soueres, J.-P. Laumond, and R. Chatila, “Primitives for smoothing mobile robot trajectories,” IEEE Trans. Robotics and Automation, vol. 11, no. 3, pp. 441-448, 1995.
[29] W. A. Daxwanger and G. K. Schmidt, “Skill-based visual parking control using neural and fuzzy networks,” in Proc. IEEE Int. Conf. on Systems, Man and Cybernetics, 1995, pp. 1659-1664.
[30] Y.-W. Ryu, S.-Y. Oh, and S.-Y. Kim, “Robust automatic parking without odometry using an evolutionary fuzzy logic controller,” International Journal of Control, Automation and Systems, vol. 6, no. 3, pp. 434-443, 2008.
[31] I. Baturone, F. J. Moreno-Velo, S. Sánchez-Solano, and A. Ollero, “Automatic design of fuzzy controllers for car-like autonomous robots,” IEEE Trans. Fuzzy Systems, vol. 12, no. 4, pp. 447-465, 2004.
[32] T.-H. S. Li and S.-J. Chang, “Autonomous fuzzy parking control of a car-like mobile robot,” IEEE Trans. Systems, Man, and Cybernetics Part A: Systems and Humans., vol. 33, no. 4, pp. 451-465, 2003.
[33] C.-Y. Chen and H.-M. Feng, “Hybrid intelligent vision-based car-like vehicle backing systems design,” Expert Systems with Applications, vol. 36, no. 4, pp. 7500-7509, 2009.
[34] M. R. Heinen, F. S. Osório, F. J. Heinen, and C. Kelber, “SEVA3D: Using artificial neural networks to autonomous vehicle parking control,” in Proc. IEEE Int. Conf. on Neural Networks, 2006, pp. 4704-4711.
[35] R. J. Oentaryo and M. Pasquier, “Self-trained automated parking system,” in Proc. Int. Conf. on Control, Automation, Robotics and Vision, 2004, pp. 1005-1010.
[36] Y. Li and Y. Li, “Neural-fuzzy control of truck backer-upper system using a clustering method,” Neurocomputing, vol. 70, no. 4-6, pp. 680-688, 2007.
[37] 龍熒電動代步車-尊爵號標準型, http://www.comfort.com.tw/chinese/ly-ew402.htm
[38] Koyo Steering Systems, http://www.koyousa.com/DesktopDefault.aspx?tabid =550
[39] PIC18FXX8 Data Sheet, Microchip.
[40] “Telegrams for Operating/Configuring the LMS 2xx Laser Measurement System,” 2003.
[41] SpcaView & SpcaTools Howto, http://mxhaard.free.fr/sview.html
[42] Video4linux, http://linux.bytesex.org/v4l2/
[43] Framebuffer HOWTO, http://tldp.org/HOWTO/Framebuffer-HOWTO.html
[44] RGB and YUV Color, http://joemaller.com/fcp/fxscript_yuv_color.shtml
[45] Official Joint Photographic Experts Group site, http://www.jpeg.org/
[46] W. W. Gay, Linux Socket Programming by Example. Que, 2000.
[47] Rt73 Linux Dreiver Source, http://www.ralinktech.com/ralink/Home/Support- /Linux.html
[48] RM-033-04-407_Creator-PXA270_WiFi, 新華電腦公司。
[49] A. H. F. Lam, W. J. Li, Y. Liu, and N. Xi, “MIDS: Micro input devices system using MEMS sensors,” in Proc. IEEE Int. Conf. on Intelligent Robots and Systems, 2002, pp. 1184-1189.
[50] W. F. Milliken and D. L. Milliken, Race Car Vehicle Dynamics. SAE 1995.
[51] P. Kachroo and P. Mellodge, Mobile Robotic Car Design. McGraw-Hill, 2005.
[52] J. Holland, Designing Mobile Autonomous Robots. Elsevier Newnes, 2004.
[53] C.-T. Lin and C. S. G. Lee, Neural Fuzzy Systems: A Neuro-fuzzy Synergism to Intelligent Systems. Prentice Hall PTR, 1996.
[54] D. Ibrahim, Microcontroller Based Applied Digital Control. John Wiley, 2006.
[55] M. J. Pont, Patterns for Time-triggered Embedded Systems. ACM Press Books, 2008.
[56] CAN in Automation, http://www.can-cia.de/index.php?id=161
[57] Creator-Xscale-PXA270 User’s Guide, 新華電腦公司。
[58] Liod/Liod-G Evaluation Platform Linux User Guide, 華亨科技。
[59] MPLAB Integrated Development Environment, ttp://www.microchip.com/steetid- plg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469&part=SW007002
[60] MPLAB ICD 2, http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_P- AGE&nodeId=1406&dDocName=en010046
[61] D. Kalinsky and R. Kalinsky, “Introduction to Serial Peripheral Interface,” http://embedded.com/columns/beginerscorner/9900483?_requestid=55135
[62] Intel® PXA27x Processor Family Developer’s Manual ARM.
[63] MCP2515 Data Sheet, Microchip.
[64] GSL - GNU Scientific Library, http://www.gnu.org/software/gsl/
[65] Qt - A cross-platform application and UI framework, http://www.qtsoftware.c- om/products/embedded-linux?gclid=CJ7xqYeBxZsCFQkwpAod8gcVAA
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊