跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:b669:e553:ec7:b9d5) 您好!臺灣時間:2024/12/03 08:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王集緯
研究生(外文):Ji-wei Wang
論文名稱:電極形狀和細胞位置對於單細胞阻抗量測的影響
論文名稱(外文):Effects of electrode geometry and cell location on single cell impedance measurement
指導教授:張凌昇
指導教授(外文):Ling-sheng Jang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:46
中文關鍵詞:電極形狀微流體裝置細胞位置單細胞分析細胞阻抗
外文關鍵詞:single cell analysismicrofluidicscell impedance measurementelectrode geometrycell location
相關次數:
  • 被引用被引用:0
  • 點閱點閱:499
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
針對單一細胞做分析比採取一群細胞做分析提供了更精確及更深入的資訊對於生物細胞體研究方面,且由於MEMS技術的成熟,使得微流體裝置能夠輕易的製作並且達到單一細胞研究的等級(奈米)。電阻抗量測為現今對單細胞研究最有效的一種方法。量測單細胞阻抗時,電極形狀和細胞位置的關係會影響量測的精確性。有鑑於此,本論文採取數值模擬的方法並搭配實驗的分析去研究這兩項因素對於單細胞阻抗量測的影響。
本研究設計了四種不同形狀的電極:平行電極、橢圓電極、船板電極、和花狀電極。使用數值模擬分析不同細胞位置坐落於這些電極所產生的影響,並藉由探討電阻抗值的變化、靈敏度高低及感測區域的大小,進而界定出最佳的量測電極去設計單細胞阻抗量測的微流體裝置。  
  實驗方面,選取模擬結果較佳的兩種電極-平行電極和橢圓電極。實驗裝置包括捕捉細胞的機制和量測的電極,並針對不同細胞的位置作阻抗量測。實驗結果証明了細胞阻抗值與細胞和電極重疊面積大小呈反比的現象。並且根據本研究所推論出的公式,在不同細胞位置所量測的細胞阻抗值可以修正為一致。
Measurements on single cells provide more accurate and in-depth information about electrical properties than those on pathological tissues. The relationship between electrode geometry and the location of a cell on microfluidic devices greatly affects the accuracy of single cell impedance measurement. Accordingly, this study presents numerical solutions from the FEM simulation of the COMSOL multiphysics package and experimental measurements to analyze the effects of electrode geometry and cell location on microfluidic devices. An equivalent electrical circuit model is developed to obtain the impedance and sensitivity of various cell locations on various electrode geometries using FEM simulation. According to the simulation results, the parallel electrodes have the largest sensing area (39μm2) and the highest sensitivity (0.976) at a voltage of 0.1 V and a frequency of 100 kHz. Increasing the width of electrodes provides a large sensing area but reduces sensitivity, whereas decreasing the gap between electrodes increases both sensing area and sensitivity. In experiments, the results demonstrate that the magnitude is inversely proportional to the overlap area of the cell and electrodes. Moreover, the impedance of single HeLa cells measured at various cell locations can be modified using equations determined from the modeling and experimental results.
中文摘要 I
ABSTRACT II
ACKNOWLEDGEMENT III
CONTENT IV
LIST OF TABLES V
LIST OF FIGURES VI
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Single-cell-analysis 1
1.3 Paper review 2
1.4 Motivation 7
1.5 Advantages of this work 8
CHAPTER 2 SIMULATION 10
2.1 Simulation setup 10
2.1.1 COMSOL Multiphysics package 10
2.1.2 Four kinds of electrodes 10
2.2 Proof of the simulation 12
2.3 Electric fields for four kinds of electrodes 14
CHAPTER 3 Electrical modeling of single cell analysis system 16
CHAPTER 4 FABRICATIONS AND EXPERIMENT SET UP 18
4.1 Chip Fabrication 18
4.1.1 Mask Design 18
4.1.2 Fabrication Process 19
4.2 Experimental setup 21
4.2.1 Measurement device 21
4.2.2 Measurement Instrument 21
CHAPTER 5 RESULTS AND DISCUSSIONS 24
5.1 Simulation results of single cell analysis 24
5.1.1 Electric field distributions 24
5.1.2 Impedance variation and sensing area 26
5.1.3 Sensitivity 32
5.2 Experimental results of impedance measurement for single HeLa cells 35
CHAPTER 6 CONCLUSIONS 42
References 44
[1] Gerdes, J., Lemke, H., Baisch, H., Wacker, H.H., Schwab, U., Stein, H., Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. The Journal of Immunology 133 (4), 1710-1715, 1984.
[2] Zhuang, Z., Berthean, P., Emmert-Buck, M.R., Liotta, L.A., Gnarra, J., Linehan, W.M., Lubensky, I.A., A microdissection technique for archival DNA analysis of specific cell populations in lesions < 1 mm in size. American Journal of Pathology (146), 620-625, 1995.
[3] Gomez, R., Bashir, R., Sarikaya, A., Ladisch, M.R., Sturgis, J., Robinson, J.P., Geng, T., Bhunia, A.K., Apple, H.L., Wereley, S., Microfluidic biochip for impedance spectroscopy of biological species Biomedical Microdevices 3, 201-209, 2001.
[4] Gawad, S., Cheung, K., Seger, U., Bertsch, A., Renaud, P., Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations. Lap Chip 4, 241-251, 2004.
[5] Ayliffe, H. E., Frazier, A. B., Rabbit, R.D., Electric impedance spectroscopy using microchannels with integrated metal electrodes. IEEE JMEMS (8), 50-57, 1999.
[6] Gilchrist, K.H., Giovangrandi, L., Kovacs, G.T.A., Analysis of microelectrode recorded signals from a cardiac cell line as a tool for pharmaceutical screening. Solid-State Sens. Actuators (Munich), 390-393, 2001.
[7] Schmukler, R., Johnson, G., Bao, J.Z., Davis, C.C., Electrical impedance of living cells: A modified four electrode approach. IEEE Eng. Med. Biol. Soc. (Rockville), 899-901, 1988.
[8] Bao, J.Z., David, C.C., Schmukler, R.E., Impedance spectroscopy of human erythrocytes: System calibration and nonlinear modeling. IEEE Trans. Biomed. Eng. 40 (4), 364-378, 1993.
[9] Oren, Y., Freger, V., Linder, C., Highly ordered heterogeneous ion exchange membranes. Journal of Membrane Science 239 (1) 17-26, 2004.
[10] Cho, Y.H., Yamamoto, T., Sakai, Y., Fujii, T., Kim, B., Development of microfluidic device for electrical/physical characterization of single cell. JMEMS 15 (2), 287-295, 2006.
[11] Jang, L.S., Wang, M.H., Microfluidic device for cell capture and impedance measurement. Biomed. Microdevices 9 (5), 737-743, 2007.
[12] Ciprian, I., Poenar, D.P., Carp, M., Loe, F.C., A microfluidic device for impedance spectroscopy analysis of biological samples. Sensors and Actuators B 123 (1) 168-176, 2007.
[13] Poenar, D.P., Iliescu, C., Carp, M., Pang, A.J., Leck, K.J., Glass-based microfluidic device fabricated by Parylene wafer-to-wafer bonding for impedance spectroscopy. Sensors and Actuators A (139) 162-171, 2007.
[14] Senez, V., Lennon, E., Ostrovidov, S., Yamamoto, T., Fujita, H., Sakai, Y., Fujita, T., Integrated 3D silicon electrodes for electrochemical sensing in microfluidic environments: application to single cell characterization. IEEE Sensors Journal 8 (5), 548-557, 2008.
[15] Sun, T., Green, N.G., Gawad, S., Morgan, H., Analytical electric field and sensitivity analysis for two microfluidic impedance cytometer designs. IET Nanobiotechnol (5), 69-79, 2007.
[16] Deman, J.J., Vakaet, L.C., Bruyneel, E.A., Cell size and mutual Cell Adhesion II. Evidence for a Relation between cell Size, long-range electrostatic repulsion and intercellular adhesiveness during density-regulated growth in suspension. J. Membrane Biol. (26), 205-215, 1976.
[17] Jin, L.H., Yang, B.Y., Zhang, L., Lin, P.L., Cui, C., Tang, J., Patterning of HeLa cells on a microfabricated Au-coated ITO substrate. Langmuir 25(9), 5380-5383, 2009.
[18] Morgan, H., Sun, T., Holmes, D., Gawad, S., Green, N.G., Single cell dielectric spectroscopy. Journal of Physics D: Applied Physics (40) 61-70, 2007.
[19] Kim, S.K., Kim, J.H., Kim, K.P., Chung, T.D., Continuous low-voltage dc electroporation on a microfluidic chip with polyelectrolytic salt bridges. Analytical Chemistry 20(79) 7761-7766, 2007.
[20] Wang, L., Wang, H., Wang, L., Mitchelson, K., Yu, Z., Cheng, J., Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors. Biosensors and Bioelectronics (24) 14-21, 2008.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top