|
[1] Gerdes, J., Lemke, H., Baisch, H., Wacker, H.H., Schwab, U., Stein, H., Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. The Journal of Immunology 133 (4), 1710-1715, 1984. [2] Zhuang, Z., Berthean, P., Emmert-Buck, M.R., Liotta, L.A., Gnarra, J., Linehan, W.M., Lubensky, I.A., A microdissection technique for archival DNA analysis of specific cell populations in lesions < 1 mm in size. American Journal of Pathology (146), 620-625, 1995. [3] Gomez, R., Bashir, R., Sarikaya, A., Ladisch, M.R., Sturgis, J., Robinson, J.P., Geng, T., Bhunia, A.K., Apple, H.L., Wereley, S., Microfluidic biochip for impedance spectroscopy of biological species Biomedical Microdevices 3, 201-209, 2001. [4] Gawad, S., Cheung, K., Seger, U., Bertsch, A., Renaud, P., Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations. Lap Chip 4, 241-251, 2004. [5] Ayliffe, H. E., Frazier, A. B., Rabbit, R.D., Electric impedance spectroscopy using microchannels with integrated metal electrodes. IEEE JMEMS (8), 50-57, 1999. [6] Gilchrist, K.H., Giovangrandi, L., Kovacs, G.T.A., Analysis of microelectrode recorded signals from a cardiac cell line as a tool for pharmaceutical screening. Solid-State Sens. Actuators (Munich), 390-393, 2001. [7] Schmukler, R., Johnson, G., Bao, J.Z., Davis, C.C., Electrical impedance of living cells: A modified four electrode approach. IEEE Eng. Med. Biol. Soc. (Rockville), 899-901, 1988. [8] Bao, J.Z., David, C.C., Schmukler, R.E., Impedance spectroscopy of human erythrocytes: System calibration and nonlinear modeling. IEEE Trans. Biomed. Eng. 40 (4), 364-378, 1993. [9] Oren, Y., Freger, V., Linder, C., Highly ordered heterogeneous ion exchange membranes. Journal of Membrane Science 239 (1) 17-26, 2004. [10] Cho, Y.H., Yamamoto, T., Sakai, Y., Fujii, T., Kim, B., Development of microfluidic device for electrical/physical characterization of single cell. JMEMS 15 (2), 287-295, 2006. [11] Jang, L.S., Wang, M.H., Microfluidic device for cell capture and impedance measurement. Biomed. Microdevices 9 (5), 737-743, 2007. [12] Ciprian, I., Poenar, D.P., Carp, M., Loe, F.C., A microfluidic device for impedance spectroscopy analysis of biological samples. Sensors and Actuators B 123 (1) 168-176, 2007. [13] Poenar, D.P., Iliescu, C., Carp, M., Pang, A.J., Leck, K.J., Glass-based microfluidic device fabricated by Parylene wafer-to-wafer bonding for impedance spectroscopy. Sensors and Actuators A (139) 162-171, 2007. [14] Senez, V., Lennon, E., Ostrovidov, S., Yamamoto, T., Fujita, H., Sakai, Y., Fujita, T., Integrated 3D silicon electrodes for electrochemical sensing in microfluidic environments: application to single cell characterization. IEEE Sensors Journal 8 (5), 548-557, 2008. [15] Sun, T., Green, N.G., Gawad, S., Morgan, H., Analytical electric field and sensitivity analysis for two microfluidic impedance cytometer designs. IET Nanobiotechnol (5), 69-79, 2007. [16] Deman, J.J., Vakaet, L.C., Bruyneel, E.A., Cell size and mutual Cell Adhesion II. Evidence for a Relation between cell Size, long-range electrostatic repulsion and intercellular adhesiveness during density-regulated growth in suspension. J. Membrane Biol. (26), 205-215, 1976. [17] Jin, L.H., Yang, B.Y., Zhang, L., Lin, P.L., Cui, C., Tang, J., Patterning of HeLa cells on a microfabricated Au-coated ITO substrate. Langmuir 25(9), 5380-5383, 2009. [18] Morgan, H., Sun, T., Holmes, D., Gawad, S., Green, N.G., Single cell dielectric spectroscopy. Journal of Physics D: Applied Physics (40) 61-70, 2007. [19] Kim, S.K., Kim, J.H., Kim, K.P., Chung, T.D., Continuous low-voltage dc electroporation on a microfluidic chip with polyelectrolytic salt bridges. Analytical Chemistry 20(79) 7761-7766, 2007. [20] Wang, L., Wang, H., Wang, L., Mitchelson, K., Yu, Z., Cheng, J., Analysis of the sensitivity and frequency characteristics of coplanar electrical cell-substrate impedance sensors. Biosensors and Bioelectronics (24) 14-21, 2008.
|