跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/08 11:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃裕翔
研究生(外文):Yu-Hsiang Huang
論文名稱:適用於壓電共振系統之換流器設計及實現
論文名稱(外文):Design and Implementation of Resonant Inverters for Piezoelectric Transducer Systems Applications
指導教授:黃世杰黃世杰引用關係
指導教授(外文):Shyh-Jier Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:100
中文關鍵詞:換流器零電壓切換
外文關鍵詞:zero-voltage switchinginverter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前超音波壓電共振之熱熔技術於工業上之應用已漸獲得重視,而開發壓電驅動更具有其實務應用參考價值,因此本文即設計換流器輸出高頻電壓,並藉由霍爾元件回授換流器電流,及經由回授電路判別後,利用場規劃邏輯閘晶片設計控制換流器之開關,以使換流器產生適當頻率之電壓,且經由適當頻率與電路設計之選擇,期使換流器開關於不同頻率下,皆可達到零電壓切換,俾以提升系統效能,降低開關溫度,並同時有效驅動壓電共振陶瓷產生機械振盪,以驅使系統穩定運作。本文同時推導換流器系統之輸出電壓與輸入電壓之關係,並經由模擬驗證本文所提之控制系統正確性,且實作雛型電路及紀錄實測波形,以佐證本文所提電路之可行性及實務採行之參考價值。
With an increased concern of ultrasonics piezoelectric transducer systems, the development of inverters to be suitable for such an industrial application system has gained a higher practical value nowadays. In this thesis, the resonant inverter circuit of high frequency that is controlled by field programmable gate array to drive ultrasonics piezoelectric systems has been completed with a high success. Meanwhile, the developed system owns the capability of zero-voltage switching(ZVS), hence exhibiting the merits of low power loss and temperature rise. To validate the effectiveness of the method, this thesis has investigated the voltage relationships between input and output as well as examined the corresponding waveforms. Test measurement help confirm the feasibility and practicality of the method for the application applied.
中文摘要 I

英文摘要 II

誌謝 III
目錄 IV
表目錄 VII

圖目錄 VIII

符號說明 XII

第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究目的及方法 4
1-3 內容大綱 6
第二章 超音波熱熔機控制理論分析 7
2-1 簡介 7
2-2 壓電效應原理與應用 8
2-3 壓電陶瓷製過程 9
2-4 壓電陶瓷諧振頻率推導 10
2-5 壓電陶瓷特性分析 13
2-6 無串聯抗流電感之諧振電路 16
2-7 串聯抗流電感之諧振電路 18
2-8 壓電陶瓷電流與頻率關係 23
2-9 控制理論分析 25
第三章 半橋換流器電路分析 27
3-1 簡介 27
3-2 換流器種類介紹 28
3-2-1 全橋式換流器 28
3-2-2 半橋式換流器 29
3-3 開關切換及柔性損失 31
3-4 半橋換流器數學模型推導 32
3-5 半橋換流器時序分析 35
第四章 系統硬體架構 38
4-1簡介 38
4-2功率晶體驅動電路 40
4-2-1控制訊號產生電路 40
4-2-2光耦合隔離驅動電路 41
4-3 主電力架構 44
4-4 保護電路 45
4-4-1 閘鎖電路 45
4-4-2 過電壓保護電路 47
4-4-3 突波保護電路 49
4-4-4 有效值偵測電路 52
4-5 回授電路 54
4-6 控制電路 56
第五章 模擬結果 61
5-1 簡介 61
5-2 換流器之變動負載測試 63
5-3 超音波系統之換流器模擬 65
5-4 壓電陶瓷端點模擬波形 74
5-5模擬結果討論 77
第六章 實驗結果 78
6-1 簡介 78
6-2 換流器之變動負載測試 80
6-3 換流器之壓電陶瓷負載測試 82
6-4 壓電陶瓷端點量測 88
6-5 硬體電路實體圖 93
第七章 結論與未來研究方向 94
7-1 結論 94
7-2 未來研究方向 95
參考文獻 96
作者簡介 100
[1]C. H. Lin, Y. Lu, H. J. Chiu and C. L. Ou, “Eliminating the temperature effect of piezoelectric transformer in backlight electronic ballast by applying the digital phase-locked -loop technique,” IEEE Transactions on Industrial Electronics, April 2007, Vol. 54, No. 2 pp. 1024-1031.

[2]M. Jordan and J. A. O'Connor, “Resonant fluorescent lamp converter provides efficient and compact solution,” in Proc. IEEE APEC, Merrimack, NH, USA, 1993, pp. 424-431.

[3]W. Zheng and C. Zhao, “A wear evaluation of friction materials
used for rotary ultrasonic motors,” IEEE Ultrasonics Symposium, Nov.2008, Beijing, pp. 1838 -1841.

[4]K. Otokawa and T .Maeno, “Development of an arrayed-type multi -degree-of-freedom ultrasonic motor based on a selection of reciprocating vibration modes,” IEEE on Ultrasonics Symposium, Yokohama, Japan, Aug. 2004, Vol 2, , pp. 1181-1184.

[5]H. W. Kim, S. Dong, P. Laoratanakul, K. Uchino and P. Park,
“Novel method for driving the ultrasonic motor, ” IEEE Transactions
on Ultrasonics, Oct. 2002, Vol. 49, No. 10 pp. 1356-1362.

[6]T .Senjyu, S. Yokada, H. Miyazato and K. Uezato, “Speed control of ultrasonic motors by adaptive control with a simplified mathematical model, ”IET Proceedings - Electric Power Applications, , May 1998 ,Vol 145, No. 3, pp. 180-184.

[7]M. I. Boulos, “Development of an ultrasonic motor as a fine-orienting stage, ” IEEE Transactions on Robotics and Automation, Dec. 1991,Vol. 19, No. 6, pp. 1078-1089.

[8]J. Tsujino, M. Hongoh and T. Ueoka, “Welding characteristics of 40 kHz ultrasonic plastic welding system using fundamental and higher resonance frequency vibrations, ”IEEE Ultrasonics Symposium, Yokohama, Japan, Oct. 2002, Vol 1, pp.699 – 702.

[9]K. Adachi, M. Saito, M. Ikeya and S. Mori, ”Development of torsional -vibration systems used for high frequency ultrasonic plastic welding,” IEEE Ultrasonics Symposium, Yonezawa, Japan, Nov. 1995, Vol. 2, pp. 1061-1064.

[10]J. Tsujino, Y. Ishii, T. Shiraki, T. Tamura and T. Ueoka,“ Welding
characteristics of 90 kHz two-vibration-system ultrasonic plastic welding equipment,” IEEE Ultrasonics Symposium, Yokohama, Japan, Nov. 1994, Vol. 3, pp. 1353-1358.

[11]J. Tsujino, T. Tamura, T. Uchida and T. Ueoka, “Improvement of welding characteristics of ultrasonic plastic welding using high and low frequency vibration systems of 90 kHz and 27 or 20 kHz,” IEEE Ultrasonics Symposium, Yokohama, Japan, Nov. 1996, Vol. 2, pp.1027-1032.

[12]J. Tsujino, M. Hongoh, M. Yoshikuni, H. Hashii and T. Ueoka, “Configuration of a 30-mm-diameter 94 kHz ultrasonic longitudinal vibration system for plastic welding, ” IEEE Ultrasonics Symposium Vol. 1, Oct. 2003 pp. 703 – 706.

[13]J. Tsujino, M. Hongoh, M. Yoshikuni, H. Miura and T. Ueoka, “Welding characteristics and temperature rises of various frequency ultrasonic plastic welding, ” IEEE Ultrasonics Symposium , Yokohama, Japan, Sept. 2005, Vol. 1, Sept. 2005, pp. 707 - 712.

[14]M. Hongoh, M. Yoshikuni, H. Miura, T. Ueoka and J. Tsujino, “Configuration of a 20-mm-diameter 150 kHz ultrasonic longitudinal vibration system for plastic welding,” IEEE Ultrasonics Symposium, Yokohama, Japan, Aug. 2004, Vol. 3, pp. 2326-2329.

[15]J. Tsujino, T. Uchida, Yamano, K. T. Iwamoto and T. Ueoka, “Ultrasonics plastic welding Using Two 27 complex vibration systems,” IEEE Ultrasonics Symposium, Aug. 2004, Oct. 1997,Vol. 1, pp. 855 - 860 .

[16]P. Curie and J. Curie, “Bull,” Soc.Min,de Framce, p90, 1880.

[17]W. G.. Hankel, “Abh.Sachs, ” p457, 1881.


[18]吳朗,”電子陶瓷-壓電,”全新科技出版社,台北市,1994

[19]高至鈞,汪建民 “壓電陶瓷縱談”,材料與社會第26期,pp.4-11,1989年2月

[20]M.E. Frerking ,Crystal Oscillator Design And Temperature compensation, Van Nostrand Reinhold Company,New York, 1987

[21]M. C. Cosby and R. M. Nelms, “A Resonant Inverter for Electronic Ballast Applications,” IEEE Transactions on Industrial Electronics, Vol. 41, No. 4, August 1994, pp. 418-425.

[22]W. J. B. Heffernan, P. D. Evans, M. Thompson and P. Robert, “Three Phase Parallel Loaded Resonant Converter with Fixed Frequency Operation, ” 1991 Fourth International Conference on Power Electronics and Variable-Speed Drives, London, England, 17-19 July 1990, pp. 115 - 120.

[23]J. M. Alonso, C. Blanco, E. Lopes, A. J. Calleja and M. Rico, “Analysis, Design, and Optimization of the LCC Resonant Inverter as a High-Intensity Discharge Lamp Ballast,” IEEE Transactions on Power Electronics, Vol. 13, No. 3, May 1998, pp. 573-585.

[24]Z. Chen, “Three Phase Parallel Loaded Resonant Converter with Fixed Frequency Operation, ” 1991 Fourth International Conference on Power Electronics and Variable-Speed Drives, London, England, July 1990, pp. 115 - 120.

[25]梁適安,交換式電源供給器之理論與實務設計,全華科技圖書股份有限公司,民國2001年。

[26]江炫樟 編譯,電力電子學,全華科技圖書股份有限公司,民國2002年。

[27]H. Kifune, Y. Hatanaka and M. Nakaoka , “Quasi-Series-Resonant-Type Soft-Switching Phase Shift Modulated Inverter,” IET Proceedings – Electric Power Applications, November 2003,Vol. 150, No. 6, pp. 725-732.


[28]Elegant Power Application Research Center,電力電子學綜論,全華科技圖書股份有限公司,民國96年。

[29]A. Muthuramalingam, S. V. Vedula and P. A. Janakiraman, “Performance evaluation of an FPGA controlled soft switched inverter” IEEE Transactions on Power Electronics, July 2006, Vol. 21, No. 4 , pp. 923- 932

[30]S. Jung and S.S. Kim “Hardware Implementation of a Real-Time Neural Network Controller With a DSP and an FPGA for Nonlinear Systems,” IEEE Transactions on Industrial Electronics, Feb. 2007, Vol. 54, No. 1 pp. 265 - 271.

[31]DE2 Development and Education Board EP2C35F672C6 User Manual, ALTER, Corporation 2006.

[32]Low Power Quad Differential Comparators LM339 Data Sheet, STM icroelectronic Corporation, March 2003.

[33]Photo-Coupler TLP-250 Data Sheet, TOSHIBA Corporation, June 2004.

[34]Insulated Gate Bipolar Transistor Silicon N Channel IGBT GT60M303 Data Sheet, TOSHIBA Corporation, August 1997

[35]TC4013BP/TC4013BF/TC4013BFN Dual D-Type Flip-Flop Data Sheet, TOSHIBA Corporation, December 1997.

[36]JFET-Input Operational Amplifiers TL084 Data Sheet, Texas Instruments Inc., November 1992.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top