跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/10 03:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳榮晉
研究生(外文):Jung-Chin Chen
論文名稱:(Mg1-xM2+x)4Nb2O9(M=Co、Ni)微波介電材料之研究與應用
論文名稱(外文):Study and Applications of (Mg1-xM2+x)4Nb2O9(M = Co、Ni) Microwave Dielectric Materials
指導教授:黃正亮
指導教授(外文):Cheng-Liang Huang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:116
中文關鍵詞:微波陶瓷
外文關鍵詞:ceramicmicrowave
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中首先將探討以 (Mg1-xM2+x)4Nb2O9 (M = Co、Ni)的微波介電特性及材料的微結構。由實驗結果可知 (Mg1-xCox)4Nb2O9與 (Mg1-xNix)4Nb2O9在燒結溫度 1340℃持溫4小時可得到最佳之介電特性。當M = Co且x = 0.04時,可得到 (Mg1-xCox)4Nb2O9之最佳介電特性 εr = 12.79,Q׃ = 235000 GHz (at 11.82GHz), τƒ = -63.93 ppm/℃。當M = Ni且x = 0.05時,可得到 (Mg1-xNix)4Nb2O9的最佳介電特性 εr = 12.55,Q׃ = 233000 GHz (at 12.27 GHz),τƒ = -68.56 ppm/℃。為了實現材料的溫度穩定性,我們在 (Mg0.96Co0.04)4Nb2O9與 (Mg0.95Ni0.05)4Nb2O9微波介電材料中選擇添加 為正值的 SrTiO3 (εr ~ 205、Q׃ ~ 4200GHz、τƒ��~ +1700ppm/℃)[1]。
此外,本論文將分別以 FR4、 Al2O3及 0.6(Mg0.96Co0.04)4Nb2O9-0.4SrTiO3作為基板來設計一曲折式步階阻抗帶通濾波器,濾波器的規格為:中心頻率 2.4GHz、頻寬為 6%,並使用電磁模擬軟體 HFSS來進行電腦模擬。
Frist, the microwave dielectric properties and the microstructures (Mg1-xM2+x)4Nb2O9 (M = Co、Ni) were investigated in this paper. The experiment results show that (Mg1-xCox)4Nb2O9 and (Mg1-xNix)4Nb2O9 have the best properties at sintering temperature 1340℃ for four hours. When M = Co and x = 0.04, we can obtain the best dielectric propertyes of (Mg1-xCox)4Nb2O9: εr = 12.79, Q׃ = 235000 GHz (at 11.82GHz), τƒ = -63.93 ppm/℃. With M = Ni and x = 0.05, the best dielectric properties εr = 12.55, Q׃ = 233000 GHz (at 12.27GHz), τƒ = -68.56 ppm/℃ were obtained for (Mg1-xNix)4Nb2O9. In order to achieve a temperature-stable material, we choose to add the positive temperature-coefficient material SrTiO3 (εr ~ 205、Q׃ ~ 4200 GHz、 τƒ ~ +1700 ppm/℃) to (Mg0.96Co0.04)4Nb2O9 and (Mg0.95Ni0.05)4Nb2O9 microwave dielectric materials.
Besides, a bandpass filter using meandering stepped impedance resonators have been designed on FR4、Al2O3 and 0.6(Mg0.96Co0.04)4Nb2O9-0.4SrTiO3 substrates. The band-pass frequency is 2.4GHz, the bandwidth is 6% and simulated by electromagnetic simulation software, HFSS.
摘要.................................................................................................................I
Abstract........................................................................................................II
誌謝..............................................................................................................IV
目錄..............................................................................................................VI
表目錄..........................................................................................................IX
圖目錄...........................................................................................................X
第一章 緒論................................................................................................1
1-1 前言.....................................................................................................................1
1-2 研究目的.............................................................................................................1
第二章 介電材料原理................................................................................3
2-1微波陶瓷材料之介電特性分析...........................................................................3
2-1-1 介電常數(Dielectric constant:K、εr)..................................................3

2-1-2 介電品質因數(Quality factor:Q).........................................................6
2-1-3 共振頻率之溫度係數(τƒ).....................................................................8

2-2 介電共振器(Dielectric Resonator, DR)原理....................................................9
2-3 燒結原理...........................................................................................................12
2-3-1 燒結的種類............................................................................................12
2-3-2 液相燒結理論........................................................................................14
2-3-3 陶瓷體燒結的三過程............................................................................15
2-4 Corundum結構.................................................................................................16
2-5 鈣鈦礦之結構...................................................................................................19
第三章 微帶線及濾波器之原理..............................................................20
3-1 濾波器簡介.......................................................................................................20
3-2 微帶線原理.......................................................................................................23
3-2-1 微帶傳輸線及其傳輸組態....................................................................23
3-2-2 微帶線各項參數公式計算及考量........................................................24
3-3 微帶線諧振器種類...........................................................................................31
3-4 共振器間的耦合形式.......................................................................................34
3-4-1 電場耦合................................................................................................35
3-4-2 磁場耦合................................................................................................38
3-4-3 混和耦合................................................................................................41
3-5 諧振器間耦合量...............................................................................................43
3-6 基本步階阻抗諧振器.......................................................................................44
3-7 曲折式步階阻抗帶通濾波器...........................................................................46
3-7-1 Dual-finger饋入結構.............................................................................47
3-7-2 阻抗比(K=Z2/Z1)的影響..................................................................48

3-7-3 長度比的影響........................................................................................49
3-7-4 間隙(spacing)g1之變化的影響............................................................51
第四章 實驗程序與量測方法..................................................................53
4-1 微波介電材料的製備.......................................................................................53
4-1-1 原始粉末之配置與球磨........................................................................53
4-1-2 煆燒成相................................................................................................53
4-1-3 壓模........................................................................................................53
4-1-4 燒結........................................................................................................54

4-2 微波介電材料的特性分析與量測...................................................................56
4-2-1 XRD分析................................................................................................56
4-2-2 環境式電子顯微鏡(ESEM)分析........................................................56
4-2-3 密度之量測............................................................................................56
4-2-4 微波介電特性之量測............................................................................57
4-3 濾波器之製作與量測.......................................................................................63
4-3-1 濾波器設計規格....................................................................................63
4-3-2 濾波器製作............................................................................................64
4-3-3 濾波器量測............................................................................................65
第五章 實驗結果與討論..........................................................................66
5-1 (Mg1-xCox)4Nb2O9微波特性之探討.................................................................67
5-2 (Mg1-xNix)4Nb2O9微波特性之探討..................................................................77
5-3 (1-x)(Mg0.96Co0.04)4Nb2O9-xSrTiO3微波特性之探討.....................................86
5-4 (1-x)(Mg0.95Ni0.05)4Nb2O9-xSrTiO3微波特性之探討......................................93
5-5 濾波器的響應.................................................................................................101
5-5-1 FR4基板...............................................................................................102
5-5-2 Al2O3基板.............................................................................................104
5-5-3 0.6(Mg0.96Co0.04)4Nb2O9-0.4SrTiO3基板............................................107
第六章 結論與未來展望........................................................................111
參考文獻....................................................................................................113
[1]Pai-hsuan SUN, Tetsuro NAKAMURA, Yue Jin SHAN, Yoshiyuki INAGUMA, Mitsuru ITOH and Toshiki KITAMURA , “Dielectric Behavior of (1-x)LaAlO3– xSrTiO3 Solid Solution System at Microwave Frequencies”, Jpn. J. Appl. Phys., vol.37 pp.5625-5629, 1998.
[2]David M. Pozar, Microwave Engineering. Addison-Wesley, 1998.
[3]D. Kajfez, “Computed model field distribution for isolated dielectric resonators,” IEEE Trans. Microw. Theory Tech., vol. MTT-32, pp. 1609-1616, Dec. 1984.
[4]D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave SysTFm News, vol. 13, pp. 152-161, 1983.
[5]D. Kajfez and P. Guillon, Dielectric resonators. New York: Artech House, 1989.
[6]Kingery、Bowen and Uhlmann著, 陳皇鈞譯, 陶瓷材料概論, 曉園出版社.
[7]W.J.Huppmann and G.Petzow “The Elementary Mechanisms of Liquid Sintering”, Sintering Processes, Plenum Press, pp. 189-202, 1979.
[8]H.S. Cannon and F.V. Lenel in " Proceedings of the Plansee Seminar ", Edited by F.Benesovsky Metallwerk Plansee, Reutte, pp.106, 1953.
[9]V.N. Eremenko, Y.V. Naidich and I.Aienko, Liquid Sintering, Consolation New York , Ch.4, 1970.
[10]K.S. Hwang, Phd. Thesis, Rensselaer Ploytechnic in Troy,1984.
[11]J.W. Cahn and R.B. Heady, J. Am. Ceram. Soc., pp.406, 1970.
[12]R. Raj and C.K. Chyung “ Solution Reprecipitation Creep in Glass Ceramics ” Acta Metall, pp. 159-166, 1980.
[13]W.J. Huppmann and G.Petzow, Sintering process, Edited by G.C. Kuczynski, Plenum Press, New York, pp. 189, 1980.
[14]W.J. Huppmann and G.Petzow, Ber. Bunnsenges Phys. Chem. Vol. 82, pp. 308, 1978.
[15]R.M.German : Liquid Phase Sintering, Plenum Press, New York, ch4, 1985.
[16]J.H.Jean and C.H.Lin: J.Mater.Sci.24 , pp. 500, 1989.
[17]S. J. Penn, “Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina”, J. Am. Ceram. Soc.,Vol.80, pp.1885-1888, 1997.
[18]N. Kumada, K. Taki, N.Kinomura,“Single crystal structure refinement of amagnesium niobium oxide: Mg4Nb2O9”, materials research bulletin Vol.35, 2000.
[19]T. Manabe, I. Yamaguchi. W.Kondo, S. Mizuta and T.Kumagai,“Topotaxy of Corundum-Type Tetramagnesium Diniobate and Ditantalate Layers on Rock-Salt-Type Magnesium Oxide Substrates”, J. Am. Ceram. Soc., Vol.82, pp.2061-2065, 1999.
[20]D.C. Sun1, S. Senz, D. Hesse*,“Crystallography, microstructure and morphology of Mg4Nb2O9/MgO and Mg4Ta2O9/MgO interfaces formed by topotaxial solid state reactions”, J. Eur. Ceram. Soc, Vol.26, pp.3181–3190, 2006.
[21]H. T. Ogawaa, A.K. Kana, “Crystal structure of corundum type Mg4(Nb2-xTax)O9microwave dielectric ceramics with low dielectric loss” , J. Eur. Ceram. Soc., Vol.23, pp.2485–2488, 2003.
[22]R.L. Geiger, P.E. Allen, N.R. Strader, “VLSI Design Techniques for Analog and Digital Circuits”, McGraw-Hill, pp. 674-685, 1990.
[23]V.N. Eremenko, Y.V. Naidich, and I. Aienko, "Liquid Sintering", Consolation New York , ch4, 1970.
[24]K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis , “Microstrip Lines and Slotlines Second Edition”, Artech House, Boston, 1996.
[25]R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,” IEEE. Trans. Microw. Theory Tech., vol. MIT-16, pp. 342-350, Jun. 1968.
[26]G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedance- mattching, networks, and coupling structures., New York: McGraw-Hill, 1980.
[27]V. Nalbandian, and W. Steenart, “Discontinunity in symmetric striplines due to impedance step and their compensations,” IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 573-578, Sep. 1980.
[28]張盛富,戴明鳳,無線通信之射頻被動電路設計,全華出版社,1998.
[29]K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and slotlines, second edition., Boston: Artech House, 1996.
[30]J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications: Wiley-Interscience, 2001.
[31]J. Helszajn, “Microwave Engineering: Passive, Active, and Non-reciprocal Circuits,” McGraw-Hill, 1992.
[32]M. Makimoto and S. Yamashita, “Bandpass Filters Using Parallel Coupled Stripline Stepped Impedance Resonators,” IEEE. Trans. Microwave Theory Tech., vol. 28, pp. 1413-1417, 1980.
[33]Yue Ping Zhang and Mei Sun, “Dual-Band Microstrip Bandpass Filter Using Stepped-Impedance Resonators With New Coupling Schemes,” IEEE Trans. Microw. Theory Tech., vol.54, NO. 10, pp. 3779-3785, Oct. 2006.
[34]P. Wheless and D. Kajfez, “The Use of Higher Resonant Modes in Measuring the Dielectric Constant of Dielectric Resonators,” IEEE MTT-S, Symp. Dig., pp.473-476, 1985.
[35]Y. Kobayashi and N. Katoh, “Microwave measurement of dielectric properties of low-loss materials by dielectric rod resonator method,” IEEE. Trans. Microw. Theory Tech., MTT-33, 586-592, 1985.
[36]Y. Kobayashi, and S. Tanaka, "Resonant modes of a dielectric resonator short-circuited at both ends by parallel conducting plates," IEEE. Trans. Microw. Theory Tech., MTT-28, 1077-1085, 1980.
[37]B. W. Hakki and P. D. Coleman, “A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter range,” IEEE. Trans. Microw. Theory Tech., MTT, vol. MTTS, pp. 402-410, 1960.
[38]Akinori Kan, Hirotaka Ogawa, Atsushi Yokoi, Yoshifumi Nakamura, “Crystal structural refinement of corundum-structured A4M2O9 (A=Co and Mg, M=Nb and Ta) microwave dielectric ceramics by high-temperature X-ray powder diffraction,” J. Eur. Ceram. Soc., Vol.27, pp.2977–2981, 2007.
[39]Hirotaka Ogawa, Akinori Kan, Soichi Ishihara, Yutaka Higashida, “Crystal structure of corundum type Mg4(Nb2-xTax)O9 microwavedielectric ceramics with low dielectric loss,” J. Eur. Ceram. Soc., Vol.23, pp.2485-2488, 2003.
[40]Akinori KAN, Hirotaka OGAWA, Atsushi YOKOI and Hitoshi OHSATO, “Low-Temperature Sintering and Microstructure of Mg4(Nb2-xVx)O9Microwave Dielectric Ceramic by V Substitution for Nb,” Jpn. J. Appl. Phys., Vol. 42 pp.6154-6157, 2003.
[41]Atsushi Yoshida, Hirotaka OGAWA, Akinori KAN, Soichi Ishihara, Yutaka Higashida, “Influence of Zn and Ni substitution for Mg on dielectric properties of (Mg4-xMx)(Nb2-ySby)O9 (M=Zn and Ni) solid solutions”, J. Eur. Ceram. Soc., Vol.24, pp.1765-1768, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊