|
1.Haynes J.L. Principle of flow cytometry. Cytometry supplement 3 (1988) 7-17. 2.Piatosa B. Flow cytometry as a reliable tool in diagnostics- review of basic principles, standard procedures and tests in diagnostics of primary immunodeficiencies. Central European Journal of Immunology 32:4 (2007) 247-257. 3.Scott C. L. Flow cytometry, an overview. Method of cell science 24 (2002) 1-9. 4.Coulter W. H. Means for counting particles suspended in a fluid, US Pat. (1953) 2 656 508. 5.Gregg E. C. snd Steidley D. K., Electrical counting and sizing of mammalian cells in suspension, Biophysical Journal. 5 (1965) 393-405. 6.Li J., Gershow M., Stein D., Brandin E., and Golovchenko J.A., DNA molecules and configurations in a solid-state nanopore microscope, Nature Materials 2 (2003) 611-615. 7.Voldman J., Gray M.L., Toner M. and Schmidt M.A. A microfabrication-based dynamic array cytometer, Anal. Chem. 74 (2002) 3984-3990. 8.Figeys D. and Aebersold R. High sensitivity analysis of proteins and peptides by capillary electrophoresis-tandem mass spectrometry: Recent developments in technology and applications, Electrophoresis. 19 (1998) 885-892. 9.Trumbull J. D., Glasgow I. K., Beebe D. J., Magin R. L., Integrating microfabricated fluidic systems and NMR spectroscopy. IEEE Trans. Biomed. Eng. 47 (2000)3-7. 10.Bayley H. and Martin C. R., Resistive-pulse sensing-from microbes to molecules. Chem. Rev., 100 (2000) 2575-2594 11.Xu D, Kang Y, Sridhar M, Hmelo AB, Feldman LC, Li D., and Li D., Wide-spectrum ultrasensitive fluidic sensors with amplification from both fluidic circuits and metal oxide semiconductor field effect transistors. Appl Phys Lett 91(2007) 013901-3. 12.Chang H., Kosari F., Andreadakis G., Alam M. A., Vasmatzis G. and Bashir R. DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels. Nano Lett. 4 (2004) 1551-1556. 13.Fan R., Karnik R., Yue M., Li D., Majumdar A. and Yang P., DNA translocation in inorganic nanotubes. Nano Lett. 5 (2005) 1633-1637. 14.Smeets R. M. M., Keyser U. F., Krapf D., Wu M.-Y., Dekker N. H. and Dekker C., Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett. 6 (2006) 89-95. 15.Wood D. K., Oh S.-H., Lee S.-H., Soh H. T. and Cleland A. N., High-bandwidth radio frequency Coulter counter, Appl. Phys. Lett. 87 (2005) 184106-3. 16.Bezrukov S.M., Vodyanoy I. and Parsegian V. A., Counting polymers moving through a single ion channel, Nature, 370 (1994) 279-281. 17.Bezrukov S. M., Vodyanoy I., Noise-induced enhancement of signal transduction across voltage-dependent ion channels, Nature, 378 (1995) 362-364. 18.Kasianowicz J. J., Brandin E., Branton D. and Deamer D. W., Characterization of individual polynucleotide molecules using a membrane channel, Proc. Natl. Acad. Sci. USA, 93 (1996) 13770-13773. 19.Malmstadt N., Nash M. A., Purnell R. F. and Schmidt J. J., Automated formation of lipid-bilayer membranes in a microfluidic device, Nano Letters 6 (2006) 1961-1965. 20.Saleh O. A., Sohn L. L., An artificial nanopore for molecular sensing. Nano Letters 3 (2003) 37-38. 21.Carbonaro A., Sohn L., A resistance-pulse sensor chip for multianalyte immunoassays. Lab Chip 5 (2005) 1155-1160. 22.Saleh O.A., Sohn L.L., Direct detection of antibody-antigen binding using an on-chip artificial pore. PNAS 100 (2003) 820-824. 23.Heins E. A., Siwy Z. S., Baker L. A. and Martin C. R., Detecting single porphyrin molecules in a conically shaped synthetic nanopore, Nano Lett. 5 (2005) 1824-1829. 24.Wharton J. E., Jin P, Sexton L. T., Horne L. P., Sherrill S. A., Mino W. K., and Martin C. R., A method for reproducibly preparing synthetic nanopores for resistance-pulse biosensors. Small 3 (8) (2007)1424-1430. 25.Cheung K., Gaward S. and Renaud P., Impedance spectroscopy flow cytometry: On-chip label-free cell differentiation. Cytometry Part A. 65A (2005) 124-132. 26.Jagtiani A. V., Zhe J, Hu J, Carletta J. Detection and counting of micro-scale particles and pollen using a multi-aperture Coulter counter. Measurement Science and Technology 17 (2006) 1706-1714. 27.Zhe J, Jagtiani A, Dutta P., Hu J. and Joan C., A micromachined high throughput Coulter counter for bioparticle detection and counting. J. Micromech. Microeng. 17 (2007) 304-313. 28.Morgan H., Holmes D. and Green N. G., High speed simultaneous single particle impedance and fluorescence analysis on a chip. Curr. Appl. Phys. 6 (2006) 367-370. 29.Sun T, Green N. G., Gawad S. and Morgan H., Analytical electric field and sensitivity analysis for two microfluidic impedance cytometer desins. IET Nanobiotechnol. 1 (5) (2006) 69-79. 30.Sun T, Holmes D, Gawad S, Green N. G. and Morgan H. High speed multi-frequency impedance analysis of single particles in a microfuidic cytometer using maximum length sequences. Lab Chip 7 (2007) 1034-1040. 31.Dittrich P.S., Schwille P., An integrated microfluidic system for reaction, high-sensitivity detection, and sorting of fluorescent cells and particles. Anal. Chem. 75 (2003) 5767-5774. 32.Duffy D. C., McDonald J. C., Schueller O. J. A. and Whitesides G. M., Rapid prototyping of microfluidic systems in Poly(dimethylsiloxane). Anal Chem. 70 (1998) 4974-4984. 33.Ferris M. M., McCabe M. O., Doan L. G., and Rowlen K. L., Rapid enumeration of respiratory viruses. Anal Chem. 74 (2002) 1849-1856. 34.Fu L-M., Tsai C-H. and Lin C-H., A high-discernment microflow cytometer with microweir structure. Electrophoresis 29 (2008) 1874-1880. 35.Grabowska I., Sajnoga M., Juchniewicz M., Chudy M., Dybko A. and Brzozka Z., Microfluidic system with electrochemical and optical detection, Microelectronic Engineering 84 (2007) 1741-1743. 36.Hea J., Zhong W., Tang A., Yan X., Lewis C., Majidi V. and Hang W., A fluorescence detection scheme for ultra large molecules after gas phase separation, Talanta 71 (2007) 2126-2128. 37.Holmes D., Sandison M. E., Green N. G. and Morgan H., On-chip high-speed sorting of micron-sized particles for high-throughput analysis, IEE Proc.-Nanobiotechnol. 152 (2005) 129-135. 38.Irawan R., Tay C. M., Tjin S. C. and Fu C. Y., Compact fluorescence detection using in-fiber microchannels-its potential for lab-on-a-chip applications, Lab Chip 6 (2006) 1095-1098. 39.Knittle J. E., Roach D., Horn P. B. V. and Voss K. O., Laser-induced fluorescence detector for capillary-based isoelectric immunoblot assay, Anal. Chem. 79 (2007) 9478 -9483. 40.Robert W., Applegate Jr., Jeff S., Tor V., John O., David W. M. M., Philippe B., Mark A. D. and Ali A. S. Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping. Lab Chip 6 (2006) 422-426. 41.Simonnet C., Groisman A. high-throughput and high-resolution flow cytometry in molded microfluidic devices. Analytical Chemistry 78 (2006) 5653-5663. 42.Luo C., Fu Q., Li H., Xu L., Sun M., Ouyang Q., Chen Y. and Ji H. PDMS microfluidic device for optical detection of ptotein immunoassay using gold nanoparticles. Lab Chip 5 (2005) 726-729. 43.McClain M. A., Culbertson C. T., Jacobson S. C. and Ramsey J. M. Flow cytometry of Escherichia coli on microfluidic devices. Anal Chem. 73 (2001) 5334-5338. 44.Novak L., Neuzil P., Pipper J., Zhang Y. and Lee S., An integrated fluorescence detection system for lab-on-a-chip applications, Lab Chip. 7 (2007) 27-29. 45.Scime E., Biloiu C., Compton C., Doss F., Venture D., Heard J., Choueiri E. and Spektor R., Laser induced fluorescence in a pulsed argon plasma, Rev. Sci. Instrum. 76 (2005) 026107. 46.Wolff A., Perch-Nielsen I.R., Larsen U.D., Friis P., Goranovic G., Poulsen C.R., Kutter J.P. and Telleman P., Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter, Lab Chip, 3 (2003) 22-27. 47.Yao B., Luo G., Feng X., Wang W., Chen L-X. and Wang Y., A microfluidic device based on gratity and electric force driving for flow cytometry and fluorescence activated cell sorting. Lab Chip 4 (2004) 603-607. 48.Yi C., Zhang Q., Li C-W., Yang J., Zhao J. and Yang M., Optical and electrochemical detection techniques for cell-based microfluidic systems. Anal Bioanal Chem. 384 (2006) 1259-1268. 49.Cui L., Zhang T. and Morgan H., Optical particle detection integrated in a dielectrophoretic lab-on-a-chip. J Micromech Microeng 12 (2002) 7-12. 50.Fu L-M., Yang R-J., Lin C-H., Pan Y-J. and Lee G-B., Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection. Analytica Chimica Acta 507 (2004) 163-169. 51.Kr�伳er J., Singh K., O'neill A., Jackson C., Morrison A. and O'Brien P., Development of a microfluidic device for fluorescence activated cell sorting, J. Micromech. Microeng. 12 (2002) 486-494. 52.Tung Y-C., Zhang M., Lin C-T., Kurabayashi K. and Skerlos S. J., PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes. Sens Actuators B 98 (2004) 356-367. 53.Xiang Q., Xuan X., Xu B. and Li D., Multi-functional particle detection with embedded optical fibers in poly(dimethylsiloxane) chip. Instrumentation Science & Technology 33 (2005) 597-607. 54.Bernini R, Nuccio E. D., Brescia F., Minardo A., Zeni L., Sarro P. M., Palumbo R. and Scarfi M. R., Development and characterization of integrated silicon micro flow cytometer. Anal Bioanal Chem 386 (2006) 1267-1272. 55.Chabinyc M. L., Chiu D. T., Mcdonald J. C., Stroock A. D., Christian J. F., Karger A. M. and Whitesides G. M., An integrated fluorescence detection system in poly(dimethylsiloxane) for microfluidic applications. Anal. Chem. 73 (2001) 4491-4498. 56.Pamme N., Koyama R. and Manz A., Counting and sizing of particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enchanced immunoassay. Lab Chip 3 (2003) 187-192. 57.Wang Z., El-Ali J., Engelund M., Gotsaed T., Perch-Nielsen I. R., Mogensen K. B., Snakenborg D., Kutter J. P. and Wolff A., Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements. Lab Chip 4 (2004) 372-377. 58.Hirono T., Arimoto H., Okawa S., and Yamada Y., Microfluidic image cytometry for measuring the number and sizes of biological cells flowing through a microchannel using micro-PIV technique. Measurement and Science Technology 19 (2008) 1-13. 59.Olsen M. G., and Adrian R. J., Out-of-focus effects on particle image visibility and correlation in microscopic particle image velocimetry. Exp. Fluids, 29 (2000) S166-74. 60.Chung S., Park S. J., Kim J. K., Chung C., Han D. C., and Chang J. K., Plastic microchip flow cytometer based on 2- and 3-dimensional hydrodynamic flow focusing. Microsystem Technology 9 (2003) 525-533. 61.Lee G. B., Chang C. C., Huang S. B. and Yang R. J., The hydrodynamic focusing effect inside rectangular microchannels. Journal of Micromechanics and Microengineering 16 (2006) 1024-1032. 62.Mao X., Waldeisen J. R., and Huang T. J., Microfluidic drifting-implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device. Lab on a Chip 7 (2007) 1260-1262. 63.Rodriguez-Trujillo R., Mills C., Samitier J. and Gomila G. Low cost micro-coulter counter with hydrodynamic focusing. Microfluidics Nanofluidics 3 (2007) 171-176. 64.Stiles T., Fallon R., Vestad T., Oakey J., Marr D. W. M., Squier J. and Jimenez R., Hydrodynamic focusing for vacuum-pumped microfluidics. Microfluidics and Nanofluidics 1 (2005) 280-283. 65.Sundararajan N., Pio M. S., Lee L.P., Berlin A. A., Three-dimensional hydrodynamic focusing in ploydimethylsiloxane(PDMS) microchannels. Journal of Microelectromechanical System 13(4) (2004), 559-567. 66.Xiang Q., Hu G., Gao Y. and Li D. Miniaturized immunoassay microfluidic system with electrokinetic control. Biosens Bioelectron. 10 (2005) 2006-2009. 67.Kohlheyer D., Unnikrishnan S., Besselink G. A. J., Schlautmann S., and Schasfoort R. B. M., A microfluidic device for array patterning by perpendicular electrokinetic focusing. Microfluidics and Nanofluidics. DOI 10.1007/s10404-007-0217-9 68.Xuan X. and Li D., Focused electrophoretic motion and selected electrokinetic dispensing of particles and cells in cross-microchannels. Electrophoresis 26 (2005) 3552-3560. 69.Cheng I. F., Chang H. C., Hou D. and Chang H. C., An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. Biomicrofluidics 1 (2007) 021503. 70.Holmes D., Morgan H. and Green N.G., High throughput analysis: Combining dielectrophoretic particle focusing with confocal optical detection. Biosensors and Bioelectronics 21 (2006) 1621-1630. 71.Lin C. H., Lee G. B., Fu L.M. and Hwey B.H., Vertical focusing device utilizing dielectrophoretic force and its application on microflow cytometer. Journal of Microelectromechanical System 13:6 (2004) 923-932. 72.Chu H., Doh I. and Cho Y-H., A two dimensional particle focusing channel using the positive dielectrophoresis (PDEP) guided by a dielectric structure between two planar electrodes. Conference of IEEE MEMS Tucson, AZ, USA. (2008) 13-17. 73.Morgan H., Holmes D., and Green N. G., 3D focusing of nanoparticles in microfluidic channels. IEE Proc.-Nanobiotechnol 150:2(2003) 76-81. 74.Huh D., Tung Y-C., Wei H-H., Grotberg J. B., Zhang M., Skerlos S. J., Kurabayashi K. and Takayama S., Use of air-liquid two-phase flow in hydrophobic microfluidic channels for disposable flow cytometers. Biomed Microdevices 4(2) (2002) 141-149. 75.Ateya D. A., Erickson J. S., Howell P. B. J., Hilliard L. R., Golden J. P. and Ligler F. S., The good, the bad, the tiny: a review of microflow cytometry. Anal Bioanal Chem. 391 (5) (2008) 1485-1498. 76.Dittich P. S., Tachikawa K., Manz A., Micro total analysis systems. Latest advancements and trends. Anal. Chem. 78 (2006) 3887-3908. 77.Erickson D., Li D., Integrated microfluidic devices. Anal Chim Acta 507 (2004) 11-26. 78.Mogensen K. B., Klank H., Kutter J. P., Recent developments in detection for microfluidic systems. Electrophoresis 25 (2004) 3498-3512. 79.Cheng X., Irimia D., Dixon M., Sekine K., Demirci U., Zamir L., Tompkins R. G., Rodriguez W. and Toner M., A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects. Lab Chip, 7 (2007) 170-178. 80.Cheng X., Irimia D., Dixon M., Ziperstein J. C., Demirci U., Zamir L., Tompkins R. G., Toner M. and Rodriguez W. R., A microchip approach for practical label-free CD4+ T-Cell counting of HIV-infected subjects in resource-poor settings. J. Acquir. Immune. Defic. Syndr., 45 (2007) 257-261. 81.Cheng X., Liu Y. S., Irimia D., Demirci U., Yang L., Zamir L., Rodriguez W. R., Toner M. and Bashir R., Cell detection and counting through cell lysate impedance spectroscopy in microfluidic devices. Lab Chip, 7, (2007)746-755. 82.Jones T. B., Electromechanics of particles, Cambridge University Press, Cambridge 1995. 83.Rodriguez W. R., Christodoulides N., Floriano P. N., Graham S., Mohanty S., Dixon M., Hsiang M., Peter T., Zavahir S., Thior I., Romanovicz D., Bernard B., Goodey A. P., Walker B. D. and McDevitt J. T., A microchip CD4 counting method for HIV monitoring in resource-poor settings. PLoS Med. 2 (7) (2005) 0663-0672. 84.Kang Y., Li D., Kalams S. A. and Eid J. E., DC-dieelectrophoretic separation of biological cells by size. Biomed. Microdevices 10 (2008) 243-249. 85.Fu A.Y., Chou H.P., Spence C., Arnold F.H. and Quake S.R., An integrated microfabricated cell sorter, Anal. Chem. 74 (2002) 2451-2457. 86.Fu A.Y., Spence C., Scherer A., Arnold F.H. and Quake S.R., A microfabricated fluorescence-activated cell sorter, Nat. Biotech. 17 (1999) 1109-1111. 87.Voldman J., Electrical forces for microscale cell manipulation. Annu. Rev. Biomed. Eng. 8 (2006) 425-454. 88.Wang M. M., Tu E., Raymond D. E., Yang J. M., Zhang H., Hagen N., Dees B., Mercer E. M., Forster A. H., Kariv I., Marchand P. J. and Butler W.F., Microfluidic sorting of mammalian cells by optical force switching, Nat. Biotech. 23 (2005) 83-87. 89.Xuan X. and Li D., Focused electrophoretic motion and selected electrokinetic dispensing of particles and cells in cross-microchannels, Electrophoresis, 26 (2005) 3552-3560. 90.Neamen D.A., Electronic circuit analysis and design, McGraw Hill, Europe, 2nd edn., ch. 11, pp. 640, 2001. 91.Kang K. H., Kang Y, Xuan X, and Li D. Continuous separation of microparticles by size with DC-dielectrophoresis. Electrophoresis, 27 (2006) 694-702.
|