(44.192.10.166) 您好!臺灣時間:2021/03/06 03:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:沈彥行
研究生(外文):Yan-Xing Shen
論文名稱:高分子刷界面作用與奈米壓痕運用於軟性材料界面黏著特性之研究
論文名稱(外文):The Study in the Interfacial Interactions of Polymer Brushes and Nanoindentation Applied to Evaluate the Interfacial Adhesion of Soft Materials
指導教授:林仁輝
指導教授(外文):Jen-Fin Lin
學位類別:博士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:97
語文別:中文
論文頁數:106
中文關鍵詞:界面黏著奈米壓痕高分子刷機率密度函數
外文關鍵詞:probability density functioninterfacial adhesionnanoindentationpolymer brush
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:60
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的在於探討高分子材料之界面作用特性,包含高分子刷界面作用與高分子軟性材料界面黏著性質兩大部分。在高分子刷結構及界面作用分析上,本研究考慮到高分子刷構形變動及互滲效應的影響,提出一個整合巨觀統計理論與微觀分子動力學模擬的方法以分析良好溶劑裡兩接枝同質高分子鏈之平行表面間的作用特性。此方法解決了分子動力學模擬法在定量上必須給定尺度因子的問題,並可準確預測兩接枝表面間單位面積之作用力及作用自由能,與文獻實驗數據比較之結果亦顯示本研究方法明顯優於AdG與MWC理論模型。此精確性來自於利用適當之高度機率密度函數來描述高分子刷構形變動效應以及壓縮過程中產生的互滲效應對界面作用的影響。在此方法中,分子動力學模擬結果用來建立在純壓縮作用或有互滲效應下,平均高分子刷高度與高分子刷高度分佈之標準差隨平面間距變化之分布。以此為根據,由統計理論配合數值疊代方法得到高分子刷高度分布之偏度與峰度,決定出對應於平面間距變化之高分子刷高度機率密度函數,再利用統計方法得到兩接枝表面間單位面積之作用自由能。最後透過Derjaguin近似法決定兩接枝表面間之作用力。
在高分子軟性材料黏著性質分析上,本研究利用奈米壓痕試驗來探討不同壓頭幾何形狀下壓頭與試件間黏著性質的影響。選定的軟性黏著材料為聚二甲基矽氧烷,結果證實一冪次法則可用來準確評估初始壓深效應,並藉以修正其對機械性質分析上產生之偏差。在錐形壓頭部份,針對實驗負載位移曲線在一臨界負載後所產生之等斜率可逆現象,可用沾黏邊界條件下之彈性接觸理論來加以解釋。正常與濕潤環境下黏著性質差異所形成之實驗結果亦反映出初始壓深與界面黏著之影響,且利用經由初始壓深與界面黏著效應修正後之O&P法所得到之材料彈性性質亦屬合理值。在球形壓頭部份,針對壓頭與試件間之界面黏著效應,本研究證實一接觸誘發之機制可正確加以描述,並利用修正過後之黏著接觸理論作為分析基礎。在加載段部份,同時利用M-D黏著理論及Hertzian無黏著接觸理論來分析實驗負載位移曲線,所得到的曲線幾乎重疊,且兩者之彈性模數極為接近,證實在加載段由凡得瓦爾作用造成的黏著效應對接觸情形影響甚小。而一連續加卸載壓痕試驗亦驗證此黏著機制中,加載段過程中壓頭與試件間不斷加劇的黏著接觸行為會造成卸載時先前Hertzian接觸區外高分子扯出鏈之彈性拉伸現象。在理論分析上,結合M-D黏著理論與基因演算數值方法可正確描述卸載段中產生之兩階段負載位移行為,並可求得過程中黏著能之變化,此兩階段現象乃由一臨界最大扯出鏈長度值所主導。再配合Hertzian彈性接觸解與Love變形理論可求得過程中之真實應力及變形場分布。
This dissertation aims to study the interfacial interactions of polymer materials, which are divided into two parts: the interfacial interaction between polymer brushes and the interfacial adhesion effect in the soft polymer materials. In polymer brushes part, considering the conformation fluctuations and interpenetration effect, an integrated macro-statistical and micro-simulation technique for analyzing the interaction between two parallel surfaces grafted with the same polymer brushes in a good solvent was presented. The proposed method resolves the limitations of pure MD simulation schemes in quantity determination and provides a convenient and accurate means of establishing the interaction free energy and interaction force per unit area between the two parallel substrates. Furthermore, the results obtained by the current method for the interaction force are found to be in better agreement with the experimental data than those obtained using the AdG or MWC models. The enhanced performance of the proposed method is attributed primarily to the use of an adaptive probability density function (PDF) of the brush height to model the effects of brush interpenetration and fluctuations in the brush conformation to the interfacial interaction at different distances from the grafting plane. In the proposed approach, MD simulations are performed to establish the mean brush height and the standard deviation of the brush height distribution both with and without an assumption of a brush interpenetration effect for a given value of the surface separation. Accordingly, the corresponding PDF of the brush height is then determined with the skewness and the kurtosis obtained by a numerical iteration method, and a statistical technique is applied to compute the corresponding interaction free energy per unit area of the grafted substrates. Finally, the Derjaguin approximation is employed to determine the corresponding value of the interaction force between the two surfaces.
In soft materials part, the nanoindentation technique was applied to analysis the effect of interfacial adhesion between different geometric indeneters and the sample. The chosen soft material is polydimethylsiloxane (PDMS). The study showed that the non-neglected effect of initial penetration depth to the mechanical property analysis can be evaluated by a power-law relationship. For the pyramidal indenters, the linear and reversible characteristic of experimental load-displacement results when the load exceeds a critical value was described by the elasctic contact theory under sticky boundary condition. The effects of the initial penetration depth and the interfacial adhesion were reflected by the difference between the experimental results under dry and aqueous environments.The accurate values of Young’s modulus were obtained after considering these two effects. For the spherical indenter, a mechanism of contact-induced adhesion was proposed to explain the interfacial adhesion between a spherical indenter and the specimen, which was analyzed by a modified adhesive model. In the loading process, both the Maugis–Dugdale (M-D) adhesive contact model and the non-adhesive Hertzian contact theory were used to describe the experimental load-displacement data. The indisputable agreement both on the theoretical curves and the value of elastic modulus indicated the validity of the assumption that adhesion had almost no effect on the whole loading process. The successive advancing contact between the specimen and indenter (i.e., loading process) resulted in the elastic tension of the pulled-out chains outside the Hertzian contact zone during the unloading process. Experimental results of sequent loading-unloading processes give validity to the proposed mechanism of the adhesion effect. The combination of the M-D adhesive model and the real-coded genetic algorithm allowed the two-stage load-displacement results on the unloading process well predicted by the present method. Also the variations of the adhesion energy during the unloading process can be determined. A critical value of the maximum length of the pulled-out chains dominated the transition between these two stages. The actual stress-deformation distribution can be determined by using Hertzian elastic contact solution and Love deformation expression.
摘要 I
Abstract III
致謝 VI
目錄 VII
表目錄 X
圖目錄 XI
符號說明 XIII
第一章 緒論 1
§ 1.1 前言 1
※高分子刷結構及界面作用特性 1
※奈米壓痕應用於軟性材料黏著性質之分析 2
§ 1.2 文獻回顧 3
※高分子刷結構及界面作用特性 3
※奈米壓痕應用於軟性材料黏著性質之分析 6
§ 1.3 研究目的及內容 8
第二章 理論分析 14
※高分子刷交互作用力理論模型之建立 15
§ 2.1 單一高分子刷之自由能 15
§ 2.2 受壓縮作用下之高分子刷交互作用力 17
2.2.1高分子刷構形變動效應 17
2.2.2 高分子刷互滲效應 20
§ 2.3 高分子刷之分子動力學模型建立 21
§ 2.4 高分子刷高度機率密度函數之決定 24
§ 2.5 數值疊代程序 26
2.5.1 純壓縮作用 26
2.5.2 含壓縮作用及互滲效應 27
※奈米壓痕應用於軟性材料黏著性質之分析 29
§ 2.6初始壓深效應 29
§ 2.7彈性接觸力學與彈性模數理論 29
§ 2.8黏著效應 32
2.8.1 M-D黏著接觸模型 32
2.8.2 M-D模型數值近似法 34
第三章 奈米壓痕實驗規劃 43
§ 3.1 試件製備 43
§ 3.2 基本加卸載壓痕實驗 44
3.2.1壓痕試驗機及壓頭規格 44
3.2.2壓痕試驗流程 45
第四章 結果與討論 50
※高分子刷結構及界面作用分析 51
§ 4.1 分子動力學模型之確認 51
4.1.1高分子單體數量密度分佈 51
4.1.2平均高分子刷高度分佈 52
4.1.3高分子刷高度分佈之標準差分布 54
§ 4.2 高分子刷高度機率密度函數 55
§ 4.3 互滲效應之評估 56
§ 4.4交互作用力之理論分析與實驗驗證 57
※軟性材料黏著性質之分析 61
§ 4.5 錐形壓頭結果分析 61
4.5.1 初始壓深效應 62
4.5.2 機械性質分析 62
4.5.3 黏著性質分析 63
§ 4.6 球形壓頭結果分析 64
4.6.1 接觸黏著機制 64
4.6.2 加載段黏著效應分析 65
4.6.3 卸載段黏著效應分析 66
4.6.4 真實應力-變形場分布 67
第五章 結論 91
※高分子刷結構及界面作用分析部份 91
※軟性材料黏著性質分析部份 93
A. 錐形壓頭部份 93
B. 球形壓頭部份 94
參考文獻 96
[1]A. Halperin, M. Tirrell, T.P. Lodge, “Tethered chains in polymer microstructures,” Advances in Polymer Science 100, 31 (1992).
[2]J. Pyun, T. Kowalewski, K. Matyjaszewski, “Synthesis of polymer brushes using atom transfer radical polymerization,” Macromolecular Rapid Communications 24, 1043 (2003).
[3]D.L. Anastassopoulos, A.A. Vradis, C. Toprakcioglu, G.S. Smith, L. Dai, “Neutron reflectivity study of end-attached telechelic polymers in a good solvent,” Macromolecules 31, 9369 (1998).
[4]R. Levicky, N. Koneripalli, M. Tirrell, S.K. Satija, “Concentration profiles in densely tethered polymer brushes,” Macromolecules 31, 3731 (1998).
[5]E.P.K. Currie, M. Wagemaker, M.A.C. Stuart, A.A. van Well, “Structure of grafted polymers, investigated with neutron reflectometry,” Physica B: Condensed Matter 283, 17 (2000).
[6]C. Marzolin, P. Auroy, M. Deruelle, J.P. Folkers, L. Leger, A. Menelle, “Neutron reflectometry study of the segment-density profiles in end-grafted and irreversibly adsorbed layers of polymer in good solvents,” Macromolecules 34, 8694 (2001).
[7]H.J. Taunton, C. Toprakcioglu, L.J. Fetters, J. Klein, “Forces between surfaces bearing terminally anchored polymer-chains in good solvents,” Nature 332, 712 (1988).
[8]I.E. Dunlop, W.H. Briscoe, S. Titmuss, G. Sakellariou, N. Hadjichristidis, J. Klein, “Interactions between polymer brushes: Varying the number of end-attaching groups,” Macromolecular Chemistry and Physics 205, 2443 (2004).
[9]T. Drobek, N.D. Spencer, M. Heuberger, “Compressing PEG brushes,” Macromolecules 38, 5254 (2005).
[10]S. Yamamoto, M. Ejaz, Y. Tsujii, T. Fukuda, “Surface interaction forces of well-defined, high-density polymer brushes studied by atomic force microscopy. 2. Effect of graft density,” Macromolecules 33, 5608 (2000).
[11]S. Yamamoto, M. Ejaz, Y. Tsujii, M. Matsumoto, T. Fukuda, “Surface interaction forces of well-defined, high-density polymer brushes studied by atomic force microscopy. 1. Effect of chain length,” Macromolecules 33, 5602 (2000).
[12]S.C. McLean, H. Lioe, L. Meagher, V.S.J. Craig, M.L. Gee, “Atomic force microscopy study of the interaction between adsorbed poly(ethylene oxide) layers: Effects of surface modification and approach velocity,” Langmuir 21, 2199 (2005).
[13]P. Delobelle, O. Guillon, E. Fribourg-Blanc, C. Soyer, E. Cattan, D. Remiens, “True Young modulus of Pb(Zr,Ti)O-3 films measured by nanoindentation,” Applied Physics Letters 85, 5185 (2004).
[14]Y. Zhou, C.-S. Yang, J.-A. Chen, G.-F. Ding, W. Ding, L. Wang, M.-J. Wang, Y.-M. Zhang, T.-H. Zhang, “Measurement of Young's modulus and residual stress of copper film electroplated on silicon wafer,” Thin Solid Films 460, 175 (2004).
[15]J. Zhou, K. Komvopoulos, “Surface and interface viscoelastic behaviors of thin polymer films investigated by nanoindentation,” Journal of Applied Physics 100, 114329 (2006).
[16]J.C. Lotters, W. Olthuis, P.H. Veltink, P. Bergveld, “The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications,” Journal of Micromechanics and Microengineering 7, 145 (1997).
[17]D. Tranchida, S. Piccarolo, J. Loos, A. Alexeev, “Accurately evaluating Young's modulus of polymers through nanoindentations: A phenomenological correction factor to the Oliver and Pharr procedure,” Applied Physics Letters 89, 171905 (2006).
[18]S. Alexander, “Adsorption of chain molecules with a polar head. a scaling description,” Journal de Physique (Paris) 38, 983 (1977).
[19]P.G. de Gennes, “Films of polymer-solutions,” C. R. Hebd. Seances Sci. 300, 839 (1985).
[20]S.T. Milner, T.A. Witten, M.E. Cates, “Theory of the grafted polymer brush,” Macromolecules 21, 2610 (1988).
[21]S.T. Milner, “Compressing polymer brushes - a quantitative comparison of theory and experiment,” Europhysics Letters 7, 695 (1988).
[22]M. Murat, G.S. Grest, “Interaction between grafted polymeric brushes - a molecular-dynamics study,” Physical Review Letters 63, 1074 (1989).
[23]M. Murat, G.S. Grest, “Structure of a grafted polymer brush. A molecular dynamics simulation,” Macromolecules 22, 4054 (1989).
[24]J.M.H.M. Scheutjens, G.J. Fleer, “Statistical-theory of the adsorption of interacting chain molecules .1. partition-function, segment density distribution, and adsorption-isotherms,” Journal of Physical Chemistry 83, 1619 (1979).
[25]J.M.H.M. Scheutjens, G.J. Fleer, “Statistical-theory of the adsorption of interacting chain molecules .2. train, loop, and tail size distribution,” Journal of Physical Chemistry 84, 178 (1980).
[26]G.J. Fleer, J.M.H.M. Scheutjens, “Block copolymer adsorption and stabilization of colloids,” Colloids and Surfaces 51, 281 (1990).
[27]C.M. Wijmans, J.M.H.M. Scheutjens, E.B. Zhulina, “Self-consistent field theories for polymer brushes. Lattice calculations and an asymptotic analytical description,” Macromolecules 25, 2657 (1992).
[28]T.A. Witten, L. Leibler, P.A. Pincus, “Stress relaxation in the lamellar copolymer mesophase,” Macromolecules 23, 824 (1990).
[29]M.D. Whitmore, J. Noolandi, “Theory of adsorbed block copolymers,” Macromolecules 23, 3321 (1990).
[30]A. Chakrabarti, P. Nelson, R. Toral, “Interpenetrations in polymer brushes,” Journal of Chemical Physics 100, 748 (1994).
[31]J.I. Martin, Z.G. Wang, “Polymer brushes. Scaling, compression forces, interbrush penetration, and solvent size effects,” Journal of Physical Chemistry 99, 2833 (1995).
[32]K.L. Johnson, K. Kendall, A.D. Roberts, “Surface energy and contact of elastic solids,” Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 324, 301 (1971).
[33]B.V. Derjaguin, V.M. Muller, Y.P. Toporov, “Effect of contact deformations on adhesion of particles,” Journal of Colloid and Interface Science 53, 314 (1975).
[34]D. Tabor, “Surface forces and surface interactions,” Journal of Colloid and Interface Science 58, 2 (1977).
[35]D. Maugis, “Adhesion of spheres - the JKR-DMT transition using a Dugdale model,” Journal of Colloid and Interface Science 150, 243 (1992).
[36]H. Hertz, “On the contact of elastic solids,” J. Reine Angew. Math. 92, 156 (1881).
[37]D.S. Dugdale, “Yielding of sheets containing slits,” Journal of the Mechanics and Physics of Solids 8, 100 (1960).
[38]E. Barthel, “On the description of the adhesive contact of spheres with arbitrary interaction potentials,” Journal of Colloid and Interface Science 200, 7 (1998).
[39]O. Pietrement, M. Troyon, “General equations describing elastic indentation depth and normal contact stiffness versus load,” Journal of Colloid and Interface Science 226, 166 (2000).
[40]A. Ghatak, K. Vorvolakos, H. She, D.L. Malotky, M.K. Chaudhury, “Interfacial rate processes in adhesion and friction,” Journal of Physical Chemistry B 104, 4018 (2000).
[41]K. Kendall, “Peel adhesion of solid films - surface and bulk effects,” Journal of Adhesion 5, 179 (1973).
[42]H.R. Brown, “Effects of chain pull-out on adhesion of elastomers,” Macromolecules 26, 1666 (1993).
[43]E. Raphael, P.G. de Gennes, “Rubber-rubber adhesion with connector molecules,” Journal of Physical Chemistry 96, 4002 (1992).
[44]Y. Cao, D. Yang, W. Soboyejoy, “Nanoindentation method for determining the initial contact and adhesion characteristics of soft polydimethylsiloxane,” Journal of Materials Research 20, 2004 (2005).
[45]J. Deuschle, S. Enders, E. Arzt, “Surface detection in nanoindentation of soft polymers,” Journal of Materials Research 22, 3107 (2007).
[46]Y. Lu, Y. Mei, R. Walker, M. Ballauff, M. Drechsler, “'Nano-tree'-type spherical polymer brush particles as templates for metallic nanoparticles,” Polymer 47, 4985 (2006).
[47]P.G. Degennes, “Conformations of polymers attached to an interface,” Macromolecules 13, 1069 (1980).
[48]S. Minko, “Responsive polymer brushes,” Polymer Reviews 46, 397 (2006).
[49]A.C. Fischer-Cripps, Nanoindentation, Springer, NY, 2002.
[50]K.L. Johnson, “Adhesion and friction between a smooth elastic spherical asperity and a plane surface,” Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences 453, 163 (1997).
[51]P.G. de Gennes, Scaling Concepts in Polymer Physics, 2nd edition ed., Cornell University Press, Ithaca and London, 1985.
[52]S.T. Milner, T.A. Witten, M.E. Cates, “A parabolic density profile for grafted polymers,” Europhysics Letters 5, 413 (1988).
[53]J. Klein, Shear, friction, and lubrication forces between polymer-bearing surfaces, Vol. 26, Annual Reviews Inc, Palo Alto, CA, USA, 1996.
[54]J.N. Israelachvili, Intermolecular and surface forces, 2nd edition ed., Academic Press, London, 1992.
[55]C.M. Wijmans, F.A.M. Leermakers, G.J. Fleer, “Chain stiffness and bond correlations in polymer brushes,” Journal of Chemical Physics 101, 8214 (1994).
[56]K. Kremer, G.S. Grest, “Dynamics of entangled linear polymer melts - a molecular-dynamics simulation,” Journal of Chemical Physics 92, 5057 (1990).
[57]T. Kreer, M.H. Muser, K. Binder, J. Klein, “Frictional drag mechanisms between polymer-bearing surfaces,” Langmuir 17, 7804 (2001).
[58]G.S. Grest, “Grafted polymer brushes in polymeric matrices,” Journal of Chemical Physics 105, 5532 (1996).
[59]I.N. Gibra, Probability and Statistical Inference for Scientists and Engineers, Prentice-Hall Inc., Englewood Cliffs, NJ, 1973.
[60]J.L. Loubet, J.M. Georges, J. Meille, Microindentation Techniques in Materials Science and Engineering, American Society for Testing and Materials, Philadelphia, 1986.
[61]I.N. Sneddon, “The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile,” Int. J. Eng. Sci. 3, 47 (1965).
[62]D.A. Spence, “Self similar solutions to adhesive contact problems with incremental loading,” Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 305, 55 (1968).
[63]R.B. King, “Elastic analysis of some punch problems for a layered medium,” International Journal of Solids and Structures 23, 1657 (1987).
[64]W.C. Oliver, G.M. Pharr, “Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research 7, 1564 (1992).
[65]F. Carrillo, S. Gupta, M. Balooch, S.J. Marshall, G.W. Marshall, L. Pruitt, C.M. Puttlitz, “Nanoindentation of polydimethylsiloxane elastomers: Effect of crosslinking, work of adhesion, and fluid environment on elastic modulus,” Journal of Materials Research 20, 2820 (2005).
[66]Hysitron Incorporation, http://www.hysitron.com/.
[67]P.G. de Gennes, “Polymers at an interface: a simplified view,” Advances in Colloid and Interface Science 27, 189 (1987).
[68]T.L. Kuhl, D.E. Leckband, D.D. Lasic, J.N. Israelachvili, Stealth Liposomes, CRC Press, Boca Raton, London, Tokyo, 1995.
[69]A.K. Kenworthy, K. Hristova, D. Needham, T.J. McIntosh, “Range and magnitude of the steric pressure between bilayers containing phospholipids with covalently attached poly(ethylene glycol),” Biophysical Journal 68, 1921 (1995).
[70]N.V. Efremova, B. Bondurant, D.F. O'Brien, D.E. Leckband, “Measurements of interbilayer forces and protein adsorption on uncharged lipid bilayers displaying poly(ethylene glycol) chains,” Biochemistry 39, 3441 (2000).
[71]A.E. Likhtman, A.N. Semenov, “An advance in the theory of strongly segregated polymers,” Europhysics Letters 51, 307 (2000).
[72]J.L. Goveas, S.T. Milner, W.B. Russel, “Corrections to strong-stretching theories,” Macromolecules 30, 5541 (1997).
[73]S.J. Clarson, J.A. Semlyen, Siloxane Polymers, Prentice-Hall, Englewood Cliffs, NJ, 1993.
[74]J.C. Lotters, W. Olthuis, P.H. Veltink, P. Bergveld, “Polydimethylsiloxane as an elastic material applied in a capacitive accelerometer,” Journal of Micromechanics and Microengineering 6, 52 (1996).
[75]K.G. Sharp, G.S. Blackman, N.J. Glassmaker, A. Jagota, C.Y. Hui, “Effect of stamp deformation on the quality of microcontact printing: Theory and experiment,” Langmuir 20, 6430 (2004).
[76]D.M. Ebenstein, K.J. Wahl, “A comparison of JKR-based methods to analyze quasi-static and dynamic indentation force curves,” Journal of Colloid and Interface Science 298, 652 (2006).
[77]C. Livermore, J. Voldman, Material properties database, http://www.mit.edu/~6.777/matprops/matprops.htm (2005).
[78]Y.Y. Lim, M. Munawar Chaudhri, “Indentation of elastic solids with a rigid Vickers pyramidal indenter,” Mechanics of Materials 38, 1213 (2006).
[79]L. Sirghi, F. Rossi, “Adhesion and elasticity in nanoscale indentation,” Applied Physics Letters 89, 243118 (2006).
[80]A. Bietsch, B. Michel, “Conformal contact and pattern stability of stamps used for soft lithography,” Journal of Applied Physics 88, 4310 (2000).
[81]C.J. Buchko, M.J. Slattery, K.M. Kozloff, D.C. Martin, “Mechanical properties of biocompatible protein polymer thin films,” Journal of Materials Research 15, 231 (2000).
[82]L. Bes, K. Huan, E. Khoshdel, M.J. Lowe, C.F. McConville, D.M. Haddleton, “Poly(methylmethacrylate-dimethylsiloxane) triblock copolymers synthesized by transition metal mediated living radical polymerization: Bulk and surface characterization,” European Polymer Journal 39, 5 (2003).
[83]A.E.H. Love, “Stress Produced in a semi-infinite solid by pressure on part of the boundary,” Phil. Trans. Royal Society a228, 377 (1929).
[84]H.J. Taunton, C. Toprakcioglu, L.J. Fetters, J. Klein, “Interactions between surfaces bearing end-adsorbed chains in a good solvent,” Macromolecules 23, 571 (1990).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔