|
1.M. F. Chaplin, "A proposal for the structuring of water", Biophysical Chemistry, (2000) 83(3): pp. 211-221. 2.M. C. Bellissent-Funel, "Structure and dynamics of water near hydrophilic surfaces", Journal of Molecular Liquids, (1998) 78(1-2): pp. 19-28. 3.M. C. Bellissent-Funel, "Status of experiments probing the dynamics of water in confinement", European Physical Journal E, (2003) 12(1): pp. 83-92. 4.A. Opitz, S. I. U. Ahmed, J. A. Schaefer, and M. Scherge, "Friction of thin water films: a nanotribological study", Surface Science, (2002) 504(1-3): pp. 199-207. 5.U. Raviv, S. Giasson, J. Frey, and J. Klein, "Viscosity of ultra-thin water films confined between hydrophobic or hydrophilic surfaces", Journal of Physics-Condensed Matter, (2002) 14(40): pp. 9275-9283. 6.Y. Zhu and S. Granick, "Reassessment of solidification in fluids confined between mica sheets", Langmuir, (2003) 19(20): pp. 8148-8151. 7.M. Wirtz, S. F. Yu, and C. R. Martin, "Template synthesized gold nanotube membranes for chemical separations and sensing", Analyst, (2002) 127(7): pp. 871-879. 8.M. Wirtz, M. Parker, Y. Kobayashi, and C. R. Martin, "Molecular sieving and sensing with gold nanotube membranes", Chemical Record, (2002) 2(4): pp. 259-267. 9.R. Alyautdin, D. Gothier, V. Petrov, D. Kharkevich, and J. Kreuter, "Analgesic activity of the hexapeptide dalargin adsorbed on the surface of polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles", European Journal of Pharmaceutics and Biopharmaceutics, (1995) 41(1): pp. 44-48. 10.S. P. Ju and J. G. Chang, "A molecular dynamics simulation investigation into the behavior of water molecules inside Au nanotubes of various sizes", Microporous and Mesoporous Materials, (2004) 75(1-2): pp. 81-87. 11.L. X. Dang and B. M. Pettitt, "A theoretical-study of like ion-pairs in solution", Journal of Physical Chemistry, (1990) 94(10): pp. 4303-4308. 12.A. P. Lyubartsev and A. Laaksonen, "Concentration effects in aqueous NaCl solutions. A molecular dynamics simulation", Journal of Physical Chemistry, (1996) 100(40): pp. 16410-16418. 13.J. P. Brodholt, "Molecular dynamics simulations of aqueous NaCl solutions at high pressures and temperatures", Chemical Geology, (1998) 151(1-4): pp. 11-19. 14.S. Koneshan and J. C. Rasaiah, "Computer simulation studies of aqueous sodium chloride solutions at 298 K and 683 K", Journal of Chemical Physics, (2000) 113(18): pp. 8125-8137. 15.S. Chowdhuri and A. Chandra, "Solute size effects on the solvation structure and diffusion of ions in liquid methanol under normal and cold conditions", Journal of Chemical Physics, (2006) 124(8): pp. 084507. 16.M. Cavallari, C. Cavazzoni, and M. Ferrario, "Structure of NaCl and KCl concentrated aqueous solutions by ab initio molecular dynamics", Molecular Physics, (2004) 102(9-10): pp. 959-966. 17.J. Chandrasekhar and W. L. Jorgensen, "The nature of dilute-solutions of sodium-ion in water, methanol, and tetrahydrofuran", Journal of Chemical Physics, (1982) 77(10): pp. 5080-5089. 18.S. Obst and H. Bradaczek, "Molecular dynamics study of the structure and dynamics of the hydration shell of alkaline and alkaline-earth metal cations", Journal of Physical Chemistry, (1996) 100(39): pp. 15677-15687. 19.A. Tongraar, K. R. Liedl, and B. M. Rode, "Born-Oppenheimer ab initio QM/MM dynamics simulations of Na+ and K+ in water: From structure making to structure breaking effects", Journal of Physical Chemistry A, (1998) 102(50): pp. 10340-10347. 20.S. B. Zhu and G. W. Robinson, "molecular-dynamics computer-simulation of an aqueous nacl solution - structure", Journal of Chemical Physics, (1992) 97(6): pp. 4336-4348. 21.J. A. White, E. Schwegler, G. Galli, and F. Gygi, "The solvation of Na+ in water: First-principles simulations", Journal of Chemical Physics, (2000) 113(11): pp. 4668-4673. 22.A, W. Omta, M. F. Kropman, S. Woutersen, and H. J. Bakker, "Influence of ions on the hydrogen-bond structure in liquid water", Journal of Chemical Physics, (2003) 119(23): pp. 12457-12461. 23.L. A. Naslund, D. C. Edwards, P. Werne, U. Bergmann, H. Ogasawara, L. G. M. Pettersson, S. Myneni, and A. Nilsson, "X-ray absorption spectroscopy study of the hydrogen bond network in the bulk water of aqueous solutions", Journal of Physical Chemistry A, (2005) 109(27): pp. 5995-6002. 24.E. D. Guardia, D. Laria, and J. Marti, "Hydrogen bond structure and dynamics in aqueous electrolytes at ambient and supercritical conditions", Journal of Physical Chemistry B, (2006) 110(12): pp. 6332-6338. 25.B. U. Felderhof, "Dielectric friction on a moving ion", Molecular Physics, (1983) 48(5): pp. 1003-1018. 26.R. W. Gurney, Processes in Solution, (1953) New York: McGraw-Hill. 27.F. Franks, Water: A Comprehensive Treatise, Vol. 3. (1979) London: Plenum. 28.J. Nakagawa, N. Hirota, K. Kitazawa, and M. Shoda, "Magnetic field enhancement of water vaporization", Journal of Applied Physics, (1999) 86(5): pp. 2923-2925. 29.S. H. Lee, M. Takeda, and K. Nishigaki, "Gas-liquid interface deformation of flowing water in gradient magnetic field - Influence of flow velocity and NaCl concentration", Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, (2003) 42(4A): pp. 1828-1833. 30.M. Iwasaka and S. Ueno, "Structure of water molecules under 14 T magnetic field", Journal of Applied Physics, (1998) 83(11): pp. 6459-6461. 31.K. X. Zhou, G. W. Lu, Q. C. Zhou, J. H. Song, S. T. Kiang, H. R. Xia, "Monte Carlo simulation of liquid water in a magnetic field", Journal of Applied Physics, (2000) 88(4): pp. 1802-1805. 32.S. N. Hakobyan and S.N. Ayrapetyan, "A study of specific electrical conductivity of water by the action of constant magnetic field, electromagnetic field, and low-frequency, mechanical vibrations", Biofizika, (2005) 50(2): pp. 265-270. 33.N. Hirota, Y. Ikezoe, H. Uetake, J. Nakagawa, and K. Kitazawa, "Magnetic field effect on the kinetics of oxygen dissolution into water", Materials Transactions Jim, (2000) 41(8): pp. 976-980. 34.A. Sugiyama, S. Morisaki, and R. Aogaki, "Dissolution process of copper sulfate into water in a heterogeneous vertical magnetic field", Materials Transactions Jim, (2000) 41(8): pp. 1019-1025. 35.G. Bikul'chyus, A. Ruchinskene, and V. Deninis, "Corrosion Behavior of low-carbon steel in tap water treated with permanent magnetic field", Protection of Metals, (2003) 39(5): pp. 443-447. 36.H. Hosoda, H. Mori, N. Sogoshi, A. Nagasawa, and S. Nakabayashi, "Refractive indices of water and aqueous electrolyte solutions under high magnetic fields", Journal of Physical Chemistry A, (2004) 108(9): pp. 1461-1464. 37.H. Inaba, T. Saitou, K. Tozaki, and H. Hayashi, "Effect of the magnetic field on the melting transition of H2O and D2O measured by a high resolution and supersensitive differential scanning calorimeter", Journal of Applied Physics, (2004) 96(11): pp. 6127-6132. 38.J. Lielmezs and H. Aleman, "Weak transverse magnetic-field effect on viscosity of mn(no3)2-h2o solution at several temperatures", Thermochimica Acta, (1977) 20(2): pp. 219-228. 39.E. Viswat, L. J. F. Hermans, and J. J. M. Beenakker, "Experiments on the influence of magnetic-fields on the viscosity of water and a water-nacl solution", Physics of Fluids, (1982) 25(10): pp. 1794-1796. 40.K. Ishii, S. Yamamoto, M. Yamamoto, and H. Nakayama, "Relative change of viscosity of water under a transverse magnetic field of 10 T is smaller than 10(-4)", Chemistry Letters, (2005) 34(6): pp. 874-875. 41.K. Kitazawa, Y. Ikezoe, H. Uetake, and N. Hirota, "Magnetic field effects on water, air and powders", Physica B-Condensed Matter, (2001) 294: pp. 709-714. 42.I. Otsuka and S. Ozeki, "Does magnetic treatment of water change its properties?", Journal of Physical Chemistry B, (2006) 110(4): pp. 1509-1512. 43.A. Vegiri, "Translational dynamics of a cold water cluster in the presence of an external uniform electric field", Journal of Chemical Physics, (2002) 116(20): pp. 8786-8798. 44.A. Vegiri, "Dynamic response of liquid water to an external static electric field at T=250 K", Journal of Molecular Liquids, (2004) 112(1-2): pp. 107-116. 45.A. Vegiri, "Reorientational relaxation and rotational-translational coupling in water clusters in a d.c. external electric field", Journal of Molecular Liquids, (2004) 110(1-3): pp. 155-168. 46.A. Vegiri and S. V. Schevkunov, "A molecular dynamics study of structural transitions in small water clusters in the presence of an external electric field", Journal of Chemical Physics, (2001) 115(9): pp. 4175-4185. 47.N. J. English and J. M. D. MacElroy, "Molecular dynamics simulations of microwave heating of water", Journal of Chemical Physics, (2003) 118(4): pp. 1589-1592. 48.S. K. Dewan, "Microwave effect in organic reactions", Indian Journal of Chemistry Section B-Organic Chemistry Including Medicinal Chemistry, (2006) 45(10): pp. 2337-2340. 49.Y. S. Babayan, A. S. Martaryan, V. P. Kalantaryan, R. S. Kazaryan, M. A. Parsadanyan, and P. O. Vardevanyan, "The influence of low-energy millimeter electromagnetic waves on the stability of DNA molecules in solution", Biofizika, (2007) 52(2): pp. 382-384. 50.M. Tanaka and M. Sato, "Microwave heating of water, ice, and saline solution: Molecular dynamics study", Journal of Chemical Physics, (2007) 126(3): pp. 034509. 51.M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, and T. Tsuji, "Microwave-assisted synthesis of metallic nanostructures in solution", Chemistry-a European Journal, (2005) 11(2): pp. 440-452. 52.H. Takaba, M. Katagiri, M. Kubo, R. Vetrivel, and A. Miyamoto, "Molecular design of carbon nanotubes for the separation of molecules", Microporous Materials, (1995) 3(4-5): pp. 449-455. 53.R. E. Tuzun, D. W. Noid, B. G. Sumpter, and R. C. Merkle, "Dynamics of fluid flow inside carbon nanotubes", Nanotechnology, (1996) 7(3): pp. 241-246. 54.M. C. Gordillo and J. Marti, "Hydrogen bond structure of liquid water confined in nanotubes", Chemical Physics Letters, (2000) 329(5-6): pp. 341-345. 55.G. Hummer, J. C. Rasaiah, and J. P. Noworyta, "Water conduction through the hydrophobic channel of a carbon nanotube", Nature, (2001) 414(6860): pp. 188-190. 56.M. Wirtz, M. Parker, Y. Kobayashi, and C. R. Martin, "Template-synthesized nanotubes for chemical separations and analysis", Chemistry-a European Journal, (2002) 8(16): pp. 3573-3578. 57.J. Duchet, R. Legras, and S. Demoustier-Champagne, "Chemical synthesis of polypyrrole: structure-properties relationship", Synthetic Metals, (1998) 98(2): pp. 113-122. 58.N. K. Chaki and K. Vijayamohanan, "Self-assembled monolayers as a tunable platform for biosensor applications", Biosensors & Bioelectronics, (2002) 17(1-2): pp. 1-12. 59.J. H. Kirkwood, "The statistical mechanical theory of transport properties. The equations of hydrodynamics", Journal of Chemical Physics, (1950) 18: pp. 817. 60.M. P.Allen and D. J. Tildesley, Computer Simulation in Chemical Physics, (1993) Dordrecht: Kluwer Academic. 61.P. L. Huyskens, W. A. P. Luck, and T. Zeegers-Huyskens, "Intermolecular forces :an introduction to modern methods and results", (1991, Berlin: Springer-Verlag. 62.G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, Intermolecular Forces, (1987) London: Oxford University Press. 63.M. Meyer and V. Pontikis, "Computer simulation in materials science :interatomic potentials, simulation techniques, and applications", (1991, Dordrecht: Kluwer Academic. 64.M. Rigby and E. Smith, The Forces between Molecules, (1986) London: Oxford University Press. 65.R. Smith, Atomic & Ion Collisions in Solids and at Surfaces, (1997) London: Cambridge University Press. 66.M. P. Allen and D. J. Tildesley, Computer simulation of liquid, (1994) Oxford Claredon Press. 67.A. Wallqvist and O. Teleman, "Properties of flexible water models", Molecular Physics, (1991) 74(3): pp. 515-533. 68.T. I. Mizan, P. E. Savage, and R. M. Ziff, "Comparison of rigid and flexible simple point charge water models at supercritical conditions", Journal of Computational Chemistry, (1996) 17(15): pp. 1757-1770. 69.M. Levitt, M. Hirshberg, R. Sharon, K. E. Laidig, and V. Daggett, "Calibration and testing of a water model for simulation of the molecular dynamics of proteins and nucleic acids in solution", Journal of Physical Chemistry B, (1997) 101(25): pp. 5051-5061. 70.J. Bocker, R. R. Nazmutdinov, E. Spohr, and K. Heinzinger, "Molecular-dynamics simulation studies of the mercury-water interface", Surface Science, (1995) 335(1-3): pp. 372-377. 71.E. Spohr, "Ion adsorption on metal-surfaces - the role of water-metal interactions", Journal of Molecular Liquids, (1995) 64(1-2): pp. 91-100. 72.Y. S. Dou, Y. B. Lei, A. Y. Li, Z. Y. Wen , B. R. Torralva, G. V. Lo, and R. E. Allen, "Detailed dynamics of the photodissociation of cyclobutane", Journal of Physical Chemistry A, (2007) 111(6): pp. 1133-1137. 73.V. Rosato, M. Guillope, and B. Legrand, "Thermodynamical and structural-properties of fcc transition-metals using a simple tight-binding model", Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, (1989) 59(2): pp. 321-336. 74.C. Chothia and A. M. Lesk, "The relation between the divergence of sequence and structure in proteins", Embo Journal, (1986) 5(4): pp. 823-826. 75.F. Cleri, G. Mazzone, and V. Rosato, "Order-disorder transition in cu3au - a combined molecular-dynamics and cluster-variation-method approach", Physical Review B, (1993) 47(21): pp. 14541-14544. 76.S. Koneshan and J. C. Rasaiah, "Computer simulation studies of aqueous sodium chloride solutions at 298 K and 683 K", Journal of Chemical Physics, (2000) 113(18): pp. 8125-8137. 77.N. Yu and A. A. Polycarpou, "Adhesive contact based on the Lennard-Jones potential: a correction to the value of the equilibrium distance as used in the potential", Journal of Colloid and Interface Science, (2004) 278(2): pp. 428-435. 78.Q. Spreiter and M. Walter, "Classical molecular dynamics simulation with the Velocity Verlet algorithm at strong external magnetic fields", Journal of Computational Physics, (1999) 152(1): pp. 102-119. 79.J. M. Haile, Molecular Dynamics Simulation: Elementary Methods, (1992) New York: John Wiley & Sons, Inc. 80.D. C. Rapaport, The Art of Molecular Dynamics Simulation, (1997) London: Cambridge University Press. 81.J. M. Goodfellow, Molecular dynamics, (1990) Boston: CRC Press. 82.D. Frenkel and B. Smit, Understanding Molecular Simulation, (1996) San Diego: Academic Press. 83.D. W. Heermann, Computer Simulation Method, (1990) Berlin: Springer-Verlag. 84.S. Nosé, "A unified formulation of the constant temperature molecular-dynamics methods", Journal of Chemical Physics, (1984) 81(1): pp. 511-519. 85.S. Nosé, "A molecular-dynamics method for simulations in the canonical ensemble", Molecular Physics, (1984) 52(2): pp. 255-268. 86.W. G. Hoover, "Canonical dynamics - equilibrium phase-space distributions", Physical Review A, (1985) 31(3): pp. 1695-1697. 87.W. G. Hoover, "Constant-pressure equations of motion", Physical Review A, (1986) 34(3): pp. 2499-2500. 88.F. Cleri and V. Rosato, "Tight-binding potentials for transition-metals and alloys", Physical Review B, (1993) 48(1): pp. 22-33. 89.E. A. Jagla, "Boundary lubrication properties of materials with expansive freezing", Physical Review Letters, (2002) 88(24): pp. 245504. 90.P. Ehrhart, P. Jung, H. Schultz and H. Ullmaier, Atomic Defects in Metal, (1991) Berlin: Springer-Verlag. 91.G. Ciccotti, D. Frenkel, and I. R. McDonald, Simulation of Liquids and solids, (1987) Amsterdam: North-Holland. 92.M. Kiselev and K. Heinzinger, "Molecular dynamics simulation of a chloride ion in water under the influence of an external electric field", Journal of Chemical Physics, (1996) 105: pp. 650-657. 93.I. Benjamin, "Theoretical-study of the water 1,2-dichloroethane interface - structure, dynamics, and conformational equilibria at the liquid liquid interface", Journal of Chemical Physics, (1992) 97(2): pp. 1432-1445. 94.R. V. Krems, "Breaking van der Waals molecules with magnetic fields", Physical Review Letters, (2004) 93(1): pp. 013201. 95.Y. C. Liu and Q. Wang, "Transport behavior of water confined in carbon nanotubes", Physical Review B, (2005) 72(8): pp. 085420. 96.S. P. Ju, J. G. Chang, J. S. Lin, and Y. S. Lin, "The effects of confinement on the behavior of water molecules between parallel Au plates of (001) planes", Journal of Chemical Physics, (2005) 122(15): pp. 154707. 97.S. A. Ghauri and M. S. Ansari, "Increase of water viscosity under the influence of magnetic field", Journal of Applied Physics, (2006) 100(6): pp. 066101. 98.N. J. English and J. M. D. MacElroy, "Hydrogen bonding and molecular mobility in liquid water in external electromagnetic fields", Journal of Chemical Physics, (2003) 119(22): pp. 11806-11813. 99.J. Marti, "Analysis of the hydrogen bonding and vibrational spectra of supercritical model water by molecular dynamics simulations", Journal of Chemical Physics, (1999) 110(14): pp. 6876-6886. 100.E. Guardia, D. Laria, and J. Marti, "Hydrogen bond structure and dynamics in aqueous electrolytes at ambient and supercritical conditions", Journal of Physical Chemistry B, (2006) 110(12): pp. 6332-6338.
|