(3.239.33.139) 您好!臺灣時間:2021/03/08 18:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張開泰
研究生(外文):Kai-Tai Chang
論文名稱:電磁場對於水溶液特性影響研究
論文名稱(外文):An investigation of the influence of electromagnetic fields on the properties of the aqueous solutions
指導教授:翁政義翁政義引用關係
指導教授(外文):Cheng-I Weng
學位類別:博士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:142
中文關鍵詞:水溶液電磁波分子動力學
外文關鍵詞:aqueous solutionselectromagnetic fieldmolecular dynamics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:179
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於電磁場對人體危害的疑慮升高,且其對於人體傷害與否在文獻上至今尚無定論,使得人們的生活充滿恐懼。因為人體含有70﹪以上的水,故本文藉由分子動力學探討電磁場對於水溶液之影響,來說明電磁場是否會對人體內水溶液性質造成改變。水分子所使用之勢能函數為F3C勢能(Flexible three-Centered water model),金原子之間的作用力則是利用Tight binding勢能來計算,而金原子與水分子之間的作用力以修正後之Spohr 勢能來描述。當磁場作用於水分子時,水分子氫鍵結構會更為穩固,使得水分子的移動性變差。在磁場作用對於氯化鈉水溶液影響方面,結果指出水分子與離子在磁場作用下,水分子的擴散係數會減小,離子的擴散係數會變大。由於磁場作用為非等向性,故當磁場作用於z方向時,水分子與離子在x-y平面的擴散係數比在z方向的擴散係數大。當磁場強度增強時,濃度低的氯化鈉水溶液之氫鍵結構(hydrogen-bonding structure)會增強,反之,濃度高的氯化鈉水溶液會因為磁場作用而破壞其氫鍵結構。當氯化鈉水溶液受到電磁場作用時,水分子與離子會因為電磁場的作用而造成其轉動和移動加快,進而使得水分子與離子的擴散係數增加,並且隨著電磁場強度的增加,水分子的偶極矩對準效應會更明顯。由於奈米金管拘束了管內水分子的運動,使得管內水分子的移動能力低於巨觀下水分子的移動能力,當電磁場作用於奈米金管內的水分子時,水分子徑向擴散係數因為受到奈米金管的侷限,並無明顯地變化,但軸向擴散係數則大幅度地增加。當電磁場作用於奈米金管內氯化鈉水溶液時,因為離子數目較少的關係,奈米金管管壁並不會侷限離子的行動,使得電磁場增強離子運動能力的表現上不具方向性。綜合以上所言,水溶液的性質必須在相當大的電磁場下才會有所改變,而平常人體暴露在電子產品所產生之電磁場強度皆遠小於本文所模擬的強度,故人體內水溶液性質並不會受到日常生活中電磁場影響。
Recently, the rising concern of the effects of the electromagnetic fields on the human health and the discordant opinions of the researches cause that people live in the fear. Because human body contains 70% of water, this study investigates the effects of the electromagnetic fields on the aqueous solutions by molecular dynamics to realize that whether the electromagnetic fields alter the properties of the aqueous solutions or not. The F3C (Flexible three-Centered) water model is used and the interactions between the Au atoms are calculated by the tight-binding potential. The modified Spohr potential is adopted to model the interactions between the water molecules and the Au atoms. When the magnetic field is applied in pure water, the hydrogen bond network between the water molecules becomes more stable and the mobility of the water molecules decreases. When the magnetic field is applied in the NaCl solutions, the diffusion coefficients of the water molecules decrease but the diffusion coefficients of the ions increase. The effects of the magnetic field are anisotropic, so the diffusion coefficients of the water molecules and ions in z-direction are smaller than that in x-y plane. When the magnetic field is applied in the NaCl solutions, the hydrogen bond network is enhanced in low-concentration but is destroyed in high-concentration. When the electromagnetic field is applied in the NaCl aqueous solutions, the faster rotation and motion of the water molecules and ions result in the increasing diffusion coefficients of the water molecules and ions. Besides, the dipole alignment of the water molecules becomes pronounced as the intensity of the electromagnetic field increases. The mobility of the water molecules confined in the Au nanotube is lower than in bulk water due to the constraint of the Au nanotube. When the electromagnetic field is applied in the water molecules confined in the Au nanotube, the diffusion coefficients of the water molecules vary unobviously in radial direction due to the constraint of the Au nanotube, but increase significantly in longitudinal direction. When the electromagnetic field is applied in the NaCl solutions confined in the Au nanotube, the enhancement of the diffusion coefficients of the ions is isotropic. In conclusion, the properties of the aqueous solutions change under the extremely high intensity of the electromagnetic field. Therefore, the changes of the properties of the aqueous solutions in human body under the ambient electromagnetic fields are so small to be neglected.
中文摘要 I
Abstract III
誌謝 V
表目錄 X
圖目錄 XI
符號說明 XV
第1章 緒論 1
1.1 前言 1
1.2 研究目的 4
1.3 文獻回顧 6
1.3.1 水溶液 6
1.3.2 電磁場 8
1.3.3 奈米金管 10
1.4 本文架構 11
第2章 分子動力學理論 13
2.1 勢能函數 13
2.1.1 水分子之間的作用勢能 14
2.1.2 水分子與金原子之間的作用勢能 20
2.1.3 金原子之間的作用勢能 22
2.1.4 離子之間與離子和水分子之間的作用勢能 23
2.1.5 離子與金原子之間的作用勢能 26
2.2 磁場與電磁場模擬法 27
2.3 運動方程式 30
2.3.1 Verlet演算法 31
2.3.2 Leap frog 演算法 32
2.3.3 Velocity Verlet 演算法 33
2.3.4 Gear 預測修正演算法 34
2.4 溫度修正法 38
2.4.1 Rescaling溫度修正法 38
2.4.2 Nosé-Hoover 溫度修正法[84-87] 39
2.5 週期邊界 45
第3章 分子動力學之數值模擬方法 48
3.1 物理模型 48
3.2 模擬參數與無因次化 49
3.3 初始條件 51
3.4 截斷半徑法 52
3.4.1 Verlet List表列法[66, 79-83] 53
3.4.2 Cell Link表列法[66, 79-83] 54
3.4.3 Verlet List表列法結合Cell Link表列法[66, 79-83] 56
3.5 徑向分佈函數 57
3.6 擴散係數 58
3.6.1 愛因斯坦關係式 58
3.6.2 格林古保關係式 59
第4章 模擬結果分析與討論 60
4.1 磁場對純水之影響 60
4.2 磁場對氯化鈉水溶液之影響 69
4.3 電磁場對氯化鈉水溶液之影響 86
4.4 電磁場對奈米金管內水分子之影響 106
4.5 電磁場對奈米金管內氯化鈉水溶液之影響 115
第5章 結論與建議 126
5.1 結論 126
5.2 建議 128
5.3 應用 128
參考文獻 130
1.M. F. Chaplin, "A proposal for the structuring of water", Biophysical Chemistry, (2000) 83(3): pp. 211-221.
2.M. C. Bellissent-Funel, "Structure and dynamics of water near hydrophilic surfaces", Journal of Molecular Liquids, (1998) 78(1-2): pp. 19-28.
3.M. C. Bellissent-Funel, "Status of experiments probing the dynamics of water in confinement", European Physical Journal E, (2003) 12(1): pp. 83-92.
4.A. Opitz, S. I. U. Ahmed, J. A. Schaefer, and M. Scherge, "Friction of thin water films: a nanotribological study", Surface Science, (2002) 504(1-3): pp. 199-207.
5.U. Raviv, S. Giasson, J. Frey, and J. Klein, "Viscosity of ultra-thin water films confined between hydrophobic or hydrophilic surfaces", Journal of Physics-Condensed Matter, (2002) 14(40): pp. 9275-9283.
6.Y. Zhu and S. Granick, "Reassessment of solidification in fluids confined between mica sheets", Langmuir, (2003) 19(20): pp. 8148-8151.
7.M. Wirtz, S. F. Yu, and C. R. Martin, "Template synthesized gold nanotube membranes for chemical separations and sensing", Analyst, (2002) 127(7): pp. 871-879.
8.M. Wirtz, M. Parker, Y. Kobayashi, and C. R. Martin, "Molecular sieving and sensing with gold nanotube membranes", Chemical Record, (2002) 2(4): pp. 259-267.
9.R. Alyautdin, D. Gothier, V. Petrov, D. Kharkevich, and J. Kreuter, "Analgesic activity of the hexapeptide dalargin adsorbed on the surface of polysorbate 80-coated poly(butyl cyanoacrylate) nanoparticles", European Journal of Pharmaceutics and Biopharmaceutics, (1995) 41(1): pp. 44-48.
10.S. P. Ju and J. G. Chang, "A molecular dynamics simulation investigation into the behavior of water molecules inside Au nanotubes of various sizes", Microporous and Mesoporous Materials, (2004) 75(1-2): pp. 81-87.
11.L. X. Dang and B. M. Pettitt, "A theoretical-study of like ion-pairs in solution", Journal of Physical Chemistry, (1990) 94(10): pp. 4303-4308.
12.A. P. Lyubartsev and A. Laaksonen, "Concentration effects in aqueous NaCl solutions. A molecular dynamics simulation", Journal of Physical Chemistry, (1996) 100(40): pp. 16410-16418.
13.J. P. Brodholt, "Molecular dynamics simulations of aqueous NaCl solutions at high pressures and temperatures", Chemical Geology, (1998) 151(1-4): pp. 11-19.
14.S. Koneshan and J. C. Rasaiah, "Computer simulation studies of aqueous sodium chloride solutions at 298 K and 683 K", Journal of Chemical Physics, (2000) 113(18): pp. 8125-8137.
15.S. Chowdhuri and A. Chandra, "Solute size effects on the solvation structure and diffusion of ions in liquid methanol under normal and cold conditions", Journal of Chemical Physics, (2006) 124(8): pp. 084507.
16.M. Cavallari, C. Cavazzoni, and M. Ferrario, "Structure of NaCl and KCl concentrated aqueous solutions by ab initio molecular dynamics", Molecular Physics, (2004) 102(9-10): pp. 959-966.
17.J. Chandrasekhar and W. L. Jorgensen, "The nature of dilute-solutions of sodium-ion in water, methanol, and tetrahydrofuran", Journal of Chemical Physics, (1982) 77(10): pp. 5080-5089.
18.S. Obst and H. Bradaczek, "Molecular dynamics study of the structure and dynamics of the hydration shell of alkaline and alkaline-earth metal cations", Journal of Physical Chemistry, (1996) 100(39): pp. 15677-15687.
19.A. Tongraar, K. R. Liedl, and B. M. Rode, "Born-Oppenheimer ab initio QM/MM dynamics simulations of Na+ and K+ in water: From structure making to structure breaking effects", Journal of Physical Chemistry A, (1998) 102(50): pp. 10340-10347.
20.S. B. Zhu and G. W. Robinson, "molecular-dynamics computer-simulation of an aqueous nacl solution - structure", Journal of Chemical Physics, (1992) 97(6): pp. 4336-4348.
21.J. A. White, E. Schwegler, G. Galli, and F. Gygi, "The solvation of Na+ in water: First-principles simulations", Journal of Chemical Physics, (2000) 113(11): pp. 4668-4673.
22.A, W. Omta, M. F. Kropman, S. Woutersen, and H. J. Bakker, "Influence of ions on the hydrogen-bond structure in liquid water", Journal of Chemical Physics, (2003) 119(23): pp. 12457-12461.
23.L. A. Naslund, D. C. Edwards, P. Werne, U. Bergmann, H. Ogasawara, L. G. M. Pettersson, S. Myneni, and A. Nilsson, "X-ray absorption spectroscopy study of the hydrogen bond network in the bulk water of aqueous solutions", Journal of Physical Chemistry A, (2005) 109(27): pp. 5995-6002.
24.E. D. Guardia, D. Laria, and J. Marti, "Hydrogen bond structure and dynamics in aqueous electrolytes at ambient and supercritical conditions", Journal of Physical Chemistry B, (2006) 110(12): pp. 6332-6338.
25.B. U. Felderhof, "Dielectric friction on a moving ion", Molecular Physics, (1983) 48(5): pp. 1003-1018.
26.R. W. Gurney, Processes in Solution, (1953) New York: McGraw-Hill.
27.F. Franks, Water: A Comprehensive Treatise, Vol. 3. (1979) London: Plenum.
28.J. Nakagawa, N. Hirota, K. Kitazawa, and M. Shoda, "Magnetic field enhancement of water vaporization", Journal of Applied Physics, (1999) 86(5): pp. 2923-2925.
29.S. H. Lee, M. Takeda, and K. Nishigaki, "Gas-liquid interface deformation of flowing water in gradient magnetic field - Influence of flow velocity and NaCl concentration", Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, (2003) 42(4A): pp. 1828-1833.
30.M. Iwasaka and S. Ueno, "Structure of water molecules under 14 T magnetic field", Journal of Applied Physics, (1998) 83(11): pp. 6459-6461.
31.K. X. Zhou, G. W. Lu, Q. C. Zhou, J. H. Song, S. T. Kiang, H. R. Xia, "Monte Carlo simulation of liquid water in a magnetic field", Journal of Applied Physics, (2000) 88(4): pp. 1802-1805.
32.S. N. Hakobyan and S.N. Ayrapetyan, "A study of specific electrical conductivity of water by the action of constant magnetic field, electromagnetic field, and low-frequency, mechanical vibrations", Biofizika, (2005) 50(2): pp. 265-270.
33.N. Hirota, Y. Ikezoe, H. Uetake, J. Nakagawa, and K. Kitazawa, "Magnetic field effect on the kinetics of oxygen dissolution into water", Materials Transactions Jim, (2000) 41(8): pp. 976-980.
34.A. Sugiyama, S. Morisaki, and R. Aogaki, "Dissolution process of copper sulfate into water in a heterogeneous vertical magnetic field", Materials Transactions Jim, (2000) 41(8): pp. 1019-1025.
35.G. Bikul'chyus, A. Ruchinskene, and V. Deninis, "Corrosion Behavior of low-carbon steel in tap water treated with permanent magnetic field", Protection of Metals, (2003) 39(5): pp. 443-447.
36.H. Hosoda, H. Mori, N. Sogoshi, A. Nagasawa, and S. Nakabayashi, "Refractive indices of water and aqueous electrolyte solutions under high magnetic fields", Journal of Physical Chemistry A, (2004) 108(9): pp. 1461-1464.
37.H. Inaba, T. Saitou, K. Tozaki, and H. Hayashi, "Effect of the magnetic field on the melting transition of H2O and D2O measured by a high resolution and supersensitive differential scanning calorimeter", Journal of Applied Physics, (2004) 96(11): pp. 6127-6132.
38.J. Lielmezs and H. Aleman, "Weak transverse magnetic-field effect on viscosity of mn(no3)2-h2o solution at several temperatures", Thermochimica Acta, (1977) 20(2): pp. 219-228.
39.E. Viswat, L. J. F. Hermans, and J. J. M. Beenakker, "Experiments on the influence of magnetic-fields on the viscosity of water and a water-nacl solution", Physics of Fluids, (1982) 25(10): pp. 1794-1796.
40.K. Ishii, S. Yamamoto, M. Yamamoto, and H. Nakayama, "Relative change of viscosity of water under a transverse magnetic field of 10 T is smaller than 10(-4)", Chemistry Letters, (2005) 34(6): pp. 874-875.
41.K. Kitazawa, Y. Ikezoe, H. Uetake, and N. Hirota, "Magnetic field effects on water, air and powders", Physica B-Condensed Matter, (2001) 294: pp. 709-714.
42.I. Otsuka and S. Ozeki, "Does magnetic treatment of water change its properties?", Journal of Physical Chemistry B, (2006) 110(4): pp. 1509-1512.
43.A. Vegiri, "Translational dynamics of a cold water cluster in the presence of an external uniform electric field", Journal of Chemical Physics, (2002) 116(20): pp. 8786-8798.
44.A. Vegiri, "Dynamic response of liquid water to an external static electric field at T=250 K", Journal of Molecular Liquids, (2004) 112(1-2): pp. 107-116.
45.A. Vegiri, "Reorientational relaxation and rotational-translational coupling in water clusters in a d.c. external electric field", Journal of Molecular Liquids, (2004) 110(1-3): pp. 155-168.
46.A. Vegiri and S. V. Schevkunov, "A molecular dynamics study of structural transitions in small water clusters in the presence of an external electric field", Journal of Chemical Physics, (2001) 115(9): pp. 4175-4185.
47.N. J. English and J. M. D. MacElroy, "Molecular dynamics simulations of microwave heating of water", Journal of Chemical Physics, (2003) 118(4): pp. 1589-1592.
48.S. K. Dewan, "Microwave effect in organic reactions", Indian Journal of Chemistry Section B-Organic Chemistry Including Medicinal Chemistry, (2006) 45(10): pp. 2337-2340.
49.Y. S. Babayan, A. S. Martaryan, V. P. Kalantaryan, R. S. Kazaryan, M. A. Parsadanyan, and P. O. Vardevanyan, "The influence of low-energy millimeter electromagnetic waves on the stability of DNA molecules in solution", Biofizika, (2007) 52(2): pp. 382-384.
50.M. Tanaka and M. Sato, "Microwave heating of water, ice, and saline solution: Molecular dynamics study", Journal of Chemical Physics, (2007) 126(3): pp. 034509.
51.M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, and T. Tsuji, "Microwave-assisted synthesis of metallic nanostructures in solution", Chemistry-a European Journal, (2005) 11(2): pp. 440-452.
52.H. Takaba, M. Katagiri, M. Kubo, R. Vetrivel, and A. Miyamoto, "Molecular design of carbon nanotubes for the separation of molecules", Microporous Materials, (1995) 3(4-5): pp. 449-455.
53.R. E. Tuzun, D. W. Noid, B. G. Sumpter, and R. C. Merkle, "Dynamics of fluid flow inside carbon nanotubes", Nanotechnology, (1996) 7(3): pp. 241-246.
54.M. C. Gordillo and J. Marti, "Hydrogen bond structure of liquid water confined in nanotubes", Chemical Physics Letters, (2000) 329(5-6): pp. 341-345.
55.G. Hummer, J. C. Rasaiah, and J. P. Noworyta, "Water conduction through the hydrophobic channel of a carbon nanotube", Nature, (2001) 414(6860): pp. 188-190.
56.M. Wirtz, M. Parker, Y. Kobayashi, and C. R. Martin, "Template-synthesized nanotubes for chemical separations and analysis", Chemistry-a European Journal, (2002) 8(16): pp. 3573-3578.
57.J. Duchet, R. Legras, and S. Demoustier-Champagne, "Chemical synthesis of polypyrrole: structure-properties relationship", Synthetic Metals, (1998) 98(2): pp. 113-122.
58.N. K. Chaki and K. Vijayamohanan, "Self-assembled monolayers as a tunable platform for biosensor applications", Biosensors & Bioelectronics, (2002) 17(1-2): pp. 1-12.
59.J. H. Kirkwood, "The statistical mechanical theory of transport properties. The equations of hydrodynamics", Journal of Chemical Physics, (1950) 18: pp. 817.
60.M. P.Allen and D. J. Tildesley, Computer Simulation in Chemical Physics, (1993) Dordrecht: Kluwer Academic.
61.P. L. Huyskens, W. A. P. Luck, and T. Zeegers-Huyskens, "Intermolecular forces :an introduction to modern methods and results", (1991, Berlin: Springer-Verlag.
62.G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, Intermolecular Forces, (1987) London: Oxford University Press.
63.M. Meyer and V. Pontikis, "Computer simulation in materials science :interatomic potentials, simulation techniques, and applications", (1991, Dordrecht: Kluwer Academic.
64.M. Rigby and E. Smith, The Forces between Molecules, (1986) London: Oxford University Press.
65.R. Smith, Atomic & Ion Collisions in Solids and at Surfaces, (1997) London: Cambridge University Press.
66.M. P. Allen and D. J. Tildesley, Computer simulation of liquid, (1994) Oxford Claredon Press.
67.A. Wallqvist and O. Teleman, "Properties of flexible water models", Molecular Physics, (1991) 74(3): pp. 515-533.
68.T. I. Mizan, P. E. Savage, and R. M. Ziff, "Comparison of rigid and flexible simple point charge water models at supercritical conditions", Journal of Computational Chemistry, (1996) 17(15): pp. 1757-1770.
69.M. Levitt, M. Hirshberg, R. Sharon, K. E. Laidig, and V. Daggett, "Calibration and testing of a water model for simulation of the molecular dynamics of proteins and nucleic acids in solution", Journal of Physical Chemistry B, (1997) 101(25): pp. 5051-5061.
70.J. Bocker, R. R. Nazmutdinov, E. Spohr, and K. Heinzinger, "Molecular-dynamics simulation studies of the mercury-water interface", Surface Science, (1995) 335(1-3): pp. 372-377.
71.E. Spohr, "Ion adsorption on metal-surfaces - the role of water-metal interactions", Journal of Molecular Liquids, (1995) 64(1-2): pp. 91-100.
72.Y. S. Dou, Y. B. Lei, A. Y. Li, Z. Y. Wen , B. R. Torralva, G. V. Lo, and R. E. Allen, "Detailed dynamics of the photodissociation of cyclobutane", Journal of Physical Chemistry A, (2007) 111(6): pp. 1133-1137.
73.V. Rosato, M. Guillope, and B. Legrand, "Thermodynamical and structural-properties of fcc transition-metals using a simple tight-binding model", Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, (1989) 59(2): pp. 321-336.
74.C. Chothia and A. M. Lesk, "The relation between the divergence of sequence and structure in proteins", Embo Journal, (1986) 5(4): pp. 823-826.
75.F. Cleri, G. Mazzone, and V. Rosato, "Order-disorder transition in cu3au - a combined molecular-dynamics and cluster-variation-method approach", Physical Review B, (1993) 47(21): pp. 14541-14544.
76.S. Koneshan and J. C. Rasaiah, "Computer simulation studies of aqueous sodium chloride solutions at 298 K and 683 K", Journal of Chemical Physics, (2000) 113(18): pp. 8125-8137.
77.N. Yu and A. A. Polycarpou, "Adhesive contact based on the Lennard-Jones potential: a correction to the value of the equilibrium distance as used in the potential", Journal of Colloid and Interface Science, (2004) 278(2): pp. 428-435.
78.Q. Spreiter and M. Walter, "Classical molecular dynamics simulation with the Velocity Verlet algorithm at strong external magnetic fields", Journal of Computational Physics, (1999) 152(1): pp. 102-119.
79.J. M. Haile, Molecular Dynamics Simulation: Elementary Methods, (1992) New York: John Wiley & Sons, Inc.
80.D. C. Rapaport, The Art of Molecular Dynamics Simulation, (1997) London: Cambridge University Press.
81.J. M. Goodfellow, Molecular dynamics, (1990) Boston: CRC Press.
82.D. Frenkel and B. Smit, Understanding Molecular Simulation, (1996) San Diego: Academic Press.
83.D. W. Heermann, Computer Simulation Method, (1990) Berlin: Springer-Verlag.
84.S. Nosé, "A unified formulation of the constant temperature molecular-dynamics methods", Journal of Chemical Physics, (1984) 81(1): pp. 511-519.
85.S. Nosé, "A molecular-dynamics method for simulations in the canonical ensemble", Molecular Physics, (1984) 52(2): pp. 255-268.
86.W. G. Hoover, "Canonical dynamics - equilibrium phase-space distributions", Physical Review A, (1985) 31(3): pp. 1695-1697.
87.W. G. Hoover, "Constant-pressure equations of motion", Physical Review A, (1986) 34(3): pp. 2499-2500.
88.F. Cleri and V. Rosato, "Tight-binding potentials for transition-metals and alloys", Physical Review B, (1993) 48(1): pp. 22-33.
89.E. A. Jagla, "Boundary lubrication properties of materials with expansive freezing", Physical Review Letters, (2002) 88(24): pp. 245504.
90.P. Ehrhart, P. Jung, H. Schultz and H. Ullmaier, Atomic Defects in Metal, (1991) Berlin: Springer-Verlag.
91.G. Ciccotti, D. Frenkel, and I. R. McDonald, Simulation of Liquids and solids, (1987) Amsterdam: North-Holland.
92.M. Kiselev and K. Heinzinger, "Molecular dynamics simulation of a chloride ion in water under the influence of an external electric field", Journal of Chemical Physics, (1996) 105: pp. 650-657.
93.I. Benjamin, "Theoretical-study of the water 1,2-dichloroethane interface - structure, dynamics, and conformational equilibria at the liquid liquid interface", Journal of Chemical Physics, (1992) 97(2): pp. 1432-1445.
94.R. V. Krems, "Breaking van der Waals molecules with magnetic fields", Physical Review Letters, (2004) 93(1): pp. 013201.
95.Y. C. Liu and Q. Wang, "Transport behavior of water confined in carbon nanotubes", Physical Review B, (2005) 72(8): pp. 085420.
96.S. P. Ju, J. G. Chang, J. S. Lin, and Y. S. Lin, "The effects of confinement on the behavior of water molecules between parallel Au plates of (001) planes", Journal of Chemical Physics, (2005) 122(15): pp. 154707.
97.S. A. Ghauri and M. S. Ansari, "Increase of water viscosity under the influence of magnetic field", Journal of Applied Physics, (2006) 100(6): pp. 066101.
98.N. J. English and J. M. D. MacElroy, "Hydrogen bonding and molecular mobility in liquid water in external electromagnetic fields", Journal of Chemical Physics, (2003) 119(22): pp. 11806-11813.
99.J. Marti, "Analysis of the hydrogen bonding and vibrational spectra of supercritical model water by molecular dynamics simulations", Journal of Chemical Physics, (1999) 110(14): pp. 6876-6886.
100.E. Guardia, D. Laria, and J. Marti, "Hydrogen bond structure and dynamics in aqueous electrolytes at ambient and supercritical conditions", Journal of Physical Chemistry B, (2006) 110(12): pp. 6332-6338.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔