跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/29 13:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃俊銘
研究生(外文):Chun-Ming Huang
論文名稱:應用數位影像處理於焦炭粒度檢測
論文名稱(外文):Coke Size Evaluation by Using Digital Image Processing
指導教授:陳元方陳元方引用關係
指導教授(外文):Terry Yuan-Fang Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:89
中文關鍵詞:影像分割臨界值影像處理
外文關鍵詞:Image segmentationThresholdImage processing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高品質的焦炭對高爐的操作穩定、高爐產率及耗焦率有著重要的影響,其中焦炭的粒度大小及均勻性則係品質上必須改善的項目。本文利用影像處理的方法辨識出焦炭形狀,並且計算及評估焦炭粒度大小。
研究中,利用環型燈光照射,搭配CCD 取得焦炭影像,由影像強化、臨界值法、形態學等影像處理的方式,建立出一套辨識影像中焦炭二維形狀的處理程序;經與手動描繪之區塊作比較,三種臨界值分割方法-Otsu法、Entropy 法及RATS 法中,以Otsu 法的影像分割結果為最準確。辨識出的焦炭區塊經由慣性主軸運算及旋轉搜尋,可以很快的找出其最小的寬度,即為影像平面中的焦炭粒度尺寸。靜態量測實驗中,針對大、中、小粒度尺寸分別為60mm 以上、30~60mm 及25~30mm 的三種實際焦炭,進行測試及比較;結果顯示出,影像處理系統辨識所得的焦炭粒度值與手動描繪之區塊的粒度值相當接近,平均誤差約在10%以內。然而辨識的焦炭粒度值與實際三維焦炭粒度值之間的誤差偏高,平均誤差約為20~30%;此為焦炭實際三維形狀與其影像中二維形狀之間的差異性所造成之結果。為降低粒度量測值與實際三維的焦炭粒度值之間的誤差,統計了5 組大、中、小尺寸焦炭其粒度量測值與實際三維焦炭粒度值之間的平均誤差及平均誤差百分比,並據以修正動態量測的焦炭粒度量測值;結果顯示,利用平均誤差修正方式,分別降低了大、中、小及混合尺寸焦炭粒度量測值的總平均誤差約22.8%、12.7%、18.8%及12.3%,其修正後的總平均誤差分別約10.6%、10.2%、9.5%及18.1%,利用平均誤差百分比修正方式,分別降低了大、中、小及混合尺寸焦炭粒度量測的總平均誤差約15.3%、11.7 %、16.8%及5.9%,其修正後的總平均誤差分別約18.1%、11.2%、11.5%及24.5%;整體來講,平均誤差修正的方式可以獲得較好的結果。
The quality of coke greatly influenced the stability, production and coke consumption rate of the blast furnace, the size and uniformity of coke are especially important that should be improved. In this paper, the image processing are used to detect the coke shape and evaluate the coke size.
In this article, the ring light and CCD camera are used to acquire coke image, and we used the image processing such as image enhancement, threshold and morphology to detect the 2D coke shape. We compared the manual painted
shape and the detected shape of cokes by three kinds of threshold method─ Otsu, Entropy and RATS method, the result showed that the average error of area for Otsu method is less than other two, therefore, the coke image segmentation for Otsu method is better than other two. Then, the minimum width of the coke shapes were obtained quickly by rotational searching from the principal axis and the minimum width is defined as the 2D coke size on the image plane. In the static measurement for three size of real cokes─ large(>60mm), middle(30~60mm) and small(<30mm)size coke, the result showed that the coke size of detected shape and manual painted shape are very close, because the average error of coke size between the detected shape and manual painted shape is less than 10%. However, the average error of coke size is more between the
detected shape and 3D shape that reached about 20~30%, since the shape difference between 2D and 3D shape.
In order to reduce the error between the coke size of 2D and 3D coke size,we gather 5 sets of data from large, middle and small coke, respectively, each data include the average difference and the average percentage error of coke size between the detected shape and 3D shape, and used these data to modify the detected coke size in the dynamic measurement. For average difference modification, the results showed that the overall average error of coke size between 2D and 3D shape are about 10.6%, 10.2%, 9.5% and 18.1% for large, middle, small and mixture size coke, respectively, the overall average error are reduced about 22.8%, 12.7%, 18.8% and 12.3%, respectively. For average percentage error modification, the overall average error of coke size between 2D and 3D shape are about 18.1%, 11.2%, 11.5% and 24.5% for large, middle, small and mixture size coke, respectively, the overall average error are reduced about 15.3%, 11.7%, 16.8% and 5.9%, respectively. Generally speaking, the average difference modification is better than the average percentage error
modification.
中文摘要..................................................I
英文摘要................................................III
誌謝......................................................V
目錄.....................................................VI
圖目錄....................................................X
表目錄..................................................XIV
符號說明................................................XVI
第一章 諸論
1.1 研究背景及目的........................................1
1.2 文獻回顧..............................................1
1.3 本文架構..............................................4
第二章 數位影像處理相關原理
2.1 簡介..................................................6
2.2 影像強化..............................................6
2.2.1 直方圖等化..........................................6
2.2.2 影像銳化濾波器......................................7
2.3 臨界值法..............................................9
2.3.1 Otsu法..............................................9
2.3.2 Entropy法..........................................11
2.3.3 RATS法.............................................11
2.4 形態學...............................................12
2.4.1 侵蝕與膨脹.........................................13
2.4.2 邊界抽取...........................................14
2.4.3 區域填充...........................................14
2.4.4 連通成分抽取.......................................15
2.4.5 物件分離...........................................16
第三章 焦炭粒度辨識及量測方法
3.1 焦炭形狀辨識方法.....................................17
3.2 影像處理流程.........................................20
3.3 焦炭粒度計算方法.....................................27
3.4 光源強弱對焦炭辨識之影響.............................30
第四章 實驗架設與方法
4.1 實驗系統與實驗用之焦炭...............................34
4.2 實驗�羆�.............................................35
4.3 實驗量測.............................................36
第五章 實驗結果與討論
5.1 靜態量測的焦炭粒度比較...............................38
5.1.2 大尺寸焦炭(>60mm)量測..............................38
5.1.2 中尺寸(30~60mm)焦炭量測............................42
5.1.3 小尺寸焦炭量測.....................................45
5.2 焦炭粒度值的量測統計.................................50
5.2.1 大尺寸焦炭(>60mm)的量測統計........................50
5.2.2 中尺寸焦炭(30~60mm)的量測統計......................53
5.2.3 小尺寸焦炭(< 30mm)的量測統計.......................56
5.3 焦炭粒度量測值之修正.................................59
5.3.1 修正方法...........................................60
5.3.2 大尺寸焦炭的動態量測修正結果與比較.................64
5.3.3 中尺寸焦炭的動態量測修正結果與比較.................69
5.3.4 小尺寸焦炭的動態量測修正結果與比較.................73
5.3.5 混合尺寸焦炭的動態量測修正結果與比較...............78
第六章 結論與未來展望
6.1 結論.................................................84
6.2 未來展望.............................................85
�繵悁狺暰m.................................................86
1. R. M. Carter and Y. Yan, “On-line particle sizing of pulverized and granular fuels using digital imaging techniques”, Meas. Sci. Technol. 14, pp. 1099–1109, 2003.
2. J. L. Mou, Y. M. Sun, Y. C. Chen, C. W. Liao and Y. S. Tarng, “Optical Line Scan Inspection System for Pseudo-particle Analysis”, ISIJ International, vol. 47, no. 9, pp. 1280–1283, 2007.
3. R. M. Carter and Y. Yan, “Measurement of particle shape using digital imaging techniques”, Journal of Physics: Conference Series 15, pp. 177–182, 2005.
4. Y. M. Y. Hasan and L. J. Karam, “Morphological text extraction from image”, IEEE Transaction on Image Processing, vol. 9, no. 11, pp. 1978-1983, 2000.
5. B. F. Wu, Y. Lin. Chen and C. C. Chiu, “A discriminant analysis based recursive automatic thresholding approach for image segmentation”, IEICE Transactions on Information and Systems, E88-D7, pp. 1716-1723, 2005.
6. J. S. Weszka, R. N. Nagel and A. Rosenfold “A Threshold Selection Technique”, IEEE Transaction on computers, vol. 26, pp. 1322-1326, 1975.
7. N. Otsu, “A threshold selection method from gray-level histogram”, IEEE Transaction. on Systems, Man Cybernetics SMC-9, pp. 62–66, 1979.
8. X. Wang and C. Wu, “Approach of Automatic Multithreshold Image Segmentation Based on Class Variance”, Proceedings of the World Congress on Intelligent Control and Automation, vol. 4, pp. 2671-2674, 2000.
9. S. Lin, R. Giesen and D. Nair, “A new algorithm for real-time multi-stage image thresholding”, Proc. SPIE, vol. 6070, 60700E, 2006.
10. J. Liu, W. Li and Y. Tian, Automatic Thresholding of Gray-Level Pictures Using Two-Dimensional Otsu Method, China Int Conf Circuits Syst, pp. 325-327, 1991.
11. G. Zhao, G. Zhu, Y. Zeng, T. Zhang and H. Xu, “Infrared image segmentation with 2D OTSU method based on particle swarm optimization“, Proc. of SPIE vol. 6787, 678717, pp.1-7, 2007.
12. J. Zhang and J. Hu, “Image Segmentation Based on 2D Otsu Method with Histogram Analysis”, Computer Science and Software Engineering, International Conference on vol. 6, pp. 105-108, 2008.
13. J. N. Kapur, P. K. Sahoo and A. K. C. Wong, “A new method for gray level picture thresholding using the entropy of the histogram”, Computer Vision, Graphics and Image Processing, vol. 29, pp. 273–285, 1985.
14. A. S. Abutaleb, “Automatic thresholding of gray level pictures using two dimensional entropies”, Computer Vision, Graphics, and Image processing, vol. 47, pp. 22-32, 1989.
15. Y F Zhang and Y Zhang, “Two-dimensional entropic segmentation”, Pattern Recognition Letters, vol. 20, Issue 3, pp. 329-336, 1999.
16. Y. F. Zhang and Y. Zhang, “Another Method of Building 2D Entropy to Realize Automatic Segmentation”, Journal of Physics: Conference Series 48, pp. 303–307, 2006.
17. J. Kitler, J. Illingworth and J. Foglein, “Threshold selection based on a simple image statistic”, Computer Vision, Graphics and Image processing, vol. 30, pp. 125–147, 1985.
18. M. H. F. Wlkinson, Tsiipke Wjbenga, Gijs de Vries and Michel A. Westenberg, “ Blood Vessel Segmentation Using Moving-Window Robust Automatic Threshold selection”, IEEE Signal Processing Society, Barcelona, Spain, pp. 1093–1096, 2003.
19. M. H. F. Wilkinson, “Gaussian-Weighted Moving-Window Robust Automatic Threshold Selection”, Lecture Notes in Computer Science, vol. 2756, pp. 369–376, 2003.
20. K. Khurshid, Siddiqi, C. Faure and N. Vincen, “Comparison of Niblack inspired binarization methods for ancient documents”, Proc. SPIE, vol. 7247, 72470U, pp. 1-9, 2009.
21. 廖紹剛,“數位影像處理”,台灣培生教育出版股份有限公司,2003。
22. 鐘國亮,“影像處理與電腦視覺導論”,台灣東華書局股份有限公司,2008。
23. M. Sonka, V. Hlavac and R. Boyle, “Image Processing, Analysis and Machine Vision”, Thomson, 2008.
24. NI Vision Concepts Manual, 2005 ed., National Instruments, 2005
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊