跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 22:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉峻嘉
研究生(外文):Chun-chia Yeh
論文名稱:變轉速平板凸輪機構之整合運動與動力設計
論文名稱(外文):On the Integrated Kinematic and Dynamic Design for Variable-Speed Plate Cam Mechanisms
指導教授:顏鴻森顏鴻森引用關係
指導教授(外文):Hong-Sen Yan
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:97
語文別:中文
論文頁數:133
中文關鍵詞:運動設計動力設計伺服機構凸輪機構變轉速
外文關鍵詞:variable speedcam mechanismkinematic designintegrated kinematic and dynamic designservo mechanism
相關次數:
  • 被引用被引用:6
  • 點閱點閱:578
  • 評分評分:
  • 下載下載:151
  • 收藏至我的研究室書目清單書目收藏:0
凸輪機構通常採用等轉速運轉的馬達作為動力源,若輸出桿件的運動要加改變,則必須重新設計與製作凸輪輪廓;變轉速凸輪機構可在不改變凸輪輪廓下,藉由轉速的控制,彈性調整出合適的輸出運動與動力特性。本研究以廣為應用的具反覆式滾子從動件之平板凸輪機構為對象,建立其變轉速輸入的運動與動力設計方法,實現改變轉速以改善需求特性的目的。首先推導平板凸輪的變轉速運動與動力分析模式作為設計基礎,接著使用Bezier Curve和Fourier Series函數作為凸輪轉速軌跡,並探討其運動連續性,以建立轉速軌跡表示方法。接著進行運動設計,發展改善輸出運動特性及調整輸出運動的設計方法。動力設計改善凸輪與從動件間的接觸力及馬達輸入扭矩特性的轉速軌跡設計方法,運動與動力整合設計則是同時進行運動設計與動力設計。再者,每一個設計皆以實例說明設計過程與進行結果討論。最後,以伺服馬達輸出設計轉速軌跡,動態蒐集與分析相關特性數據,實驗驗證本理論是可行的,並展現變轉速平板凸輪的功能。
The power input of a cam mechanism is usually a motor that rotates at a constant speed. If the required output motion changes, the cam contour should be resigned and remade. Without modifying the cam contour, a cam mechanism with variable input speed trajectory offers an alternative solution to flexibly achieve kinematic and dynamic characteristics. To implement the variable speed strategy for improving the required output characteristics, this work develops kinematic and dynamic design approach for the most widely used plate cam mechanisms with variable input speeds. First, kinematic and dynamic analysis models for a variable-speed plate cam mechanism are derived as the foundation for the subsequent design. The speed trajectories of cams are derived by employing Bezier curve and Fourier series functions, and motion continuity conditions are investigated. Then the kinematic design is studied to develop the design models for motion characteristics refinement and motion adaptation. The dynamic design contains the design models for improving the contact force and reducing the input torque. And the integrated kinematic and dynamic design includes the design models for the kinematic design and dynamic design at the same time. An example is provided for each design model to illustrate the design process, and the design results are discussed. Finally, to verify these design models, the designed speed trajectory is achieved by a servomotor. Data of related characteristics are dynamically measured and then analyzed to verify the design models as well as to demonstrate the performances of variable-speed plate cam mechanisms.
中文摘要 ................................................ I
英文摘要 ............................................... II
致謝 ....................................................IV
目錄 .....................................................V
圖目錄 ............................................... VIII
表目錄 ................................................ XII
第一章前言 .............................................. 1
1.1 研究動機 ............................................ 1
1.2 研究背景 ............................................ 2
1.3 研究目的 ............................................ 4
1.4 論文架構 ............................................ 4
第二章運動與動力分析 .................................... 7
2.1 運動分析 ............................................ 7
2.2 動力分析 ........................................... 12
2.3 小結 ............................................... 20
第三章轉速函數設計 ..................................... 21
3.1 Bezier函數 ......................................... 21
3.2 Fourier Series函數 ................................. 25
3.3 最佳化 ............................................. 28
3.4 目標函數與限制條件 ................................. 30
3.5 小結 ............................................... 33
第四章設計模式與實例 ................................... 34
4.1 運動設計模式 ....................................... 34
4.1.1目標函數與限制條件 ................................ 34
4.1.2設計實例1 ......................................... 38
4.1.3設計實例2 ......................................... 43
4.2 動力設計模式 ....................................... 48
4.2.1目標函數與限制條件 ................................ 48
4.2.2設計實例3 ......................................... 50
4.2.3設計實例4 ......................................... 56
4.3運動與動力整合設計模式 .............................. 61
4.3.1拘束法 ............................................ 63
4.3.2設計實例5 ......................................... 64
4.3.3應用實例6 ......................................... 69
4.3.4權重法 ............................................ 78
4.3.5設計實例7 ......................................... 79
4.3.6設計實例8 ......................................... 86
4.4 小結 ............................................... 93
第五章轉速函數控制 ..................................... 94
5.1 伺服機構系統 ....................................... 94
5.2 系統判別 ........................................... 97
5.3 PID控制器 .......................................... 98
第六章實驗與測試 ...................................... 102
6.1 實驗簡介 .......................................... 102
6.2 硬體配置 .......................................... 102
6.3 軟體架構 .......................................... 106
6.4 實驗結果 .......................................... 110
6.4.1 Bezier Curve設計實例1理論與實驗之比較 ........... 110
6.4.2 Fourier Series設計實例1理論與實驗之比較 ......... 110
6.4.3 Bezier Curve設計實例6理論與實驗之比較 ........... 110
6.4.4 Fourier Series設計實例6理論與實驗之比較 ......... 113
6.4.5 Bezier Curve設計實例8理論與實驗之比較 ........... 113
6.4.6 Fourier Series設計實例8理論與實驗之比較 ......... 120
6.5 小結 .............................................. 122
第七章結論與建議 ...................................... 123
參考文獻 .............................................. 125
自述 .................................................. 132
著作權聲明 ............................................ 133
[1] 顏鴻森,吳隆庸,機構學,第三版,東華書局,台北,第221-309頁,2006年7月。
[2] Johnson, R. C., “Force Reduction by Motion Design in Spring-Loaded Cam Mechanisms,” ASME Transactions, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 106, pp. 278-284, 1984.
[3] Febien, B. C., Longman, R. W., and Freudenstein, F., “The Design of High-Speed Dwell-Rise-Dwell Cams Using Linear Quadratic Optimal Control Theory,” ASME Transactions, Journal of Mechanisms Design, Vol. 116, pp. 867-874, 1994.
[4] Demeulenaere, B., Spaepen, P., and De Schutter, J., “Input Torque Balancing Using a Cam-Based Centrifugal Pendulum: Design Procedure and Example,” Journal of Sound and Vibration, Vol. 283, No. 1-2, pp. 1-20, 2005.
[5] Sadler, J. P. and Yang, Z., “Optimal Design of Cam-Linkage Mechanisms for Dynamic-Force Characteristics,” Mechanism and Machine Theory, Vol. 25, No. 1, pp. 41-57, 1990.
[6] Demeulenaere, B. and De Schutter, J., “Synthesis of Inertially Comensated Variable-Speed Cams,” ASME Transactions, Journal of Mechanical Design, Vol. 125, pp. 593-601, 2003.
[7] Rothbart, H. A., Cams: Design, Dynamics and Accuracy, John Wiley & Sons, New York, 1956.
[8] Tesar, D. and Matthew, G. K., The Dynamics Synthesis, Analysis, and Design of Modeled Cam Systems, Lexington Books, Lanham, Maryland, 1976.
[9] Yan, H. S. and Fong, M. K., “An Approach for Reducing the Peak Acceleration of Cam-Follower System Using a B-spline representation,” Journal of the Chinese Society of Mechanical Engineers (Taipei), Vol. 15, No. 1, pp. 48-55, 1994.
[10] Yan, H. S., Hsu, M. H., Fong, M. K., and Hesih, W. H., “A Kinematic Approach for Eliminating the Discontinuity of Motion Characteristics of Cam-Follower Systems,” Journal of Applied Mechanisms & Robotics, Vol. 1, No. 2, pp. 1-6, 1994.
[11] Yan, H. S., Tsai, M. C., and Hsu, M. H., “A Variable-Speed Method for Improving Motion Characteristics of Cam-Follower Systems,” ASME Transactions, Journal of Mechanical Design, Vol. 118, No. 1, pp. 250-258, 1996.
[12] Yan, H. S., Tsai, M. C., and Hsu, M. H., “An Experimental Study of the Effects of Cam Speed on Cam-Follower Systems,” Mechanism and Machine Theory, Vol. 31, No. 3, pp. 345-359, 1996.
[13] Van de Straete, H. J. and De Schutter, J., “Hybrid Cam Mechanisms,” IEEE/ASME Transactions on Mechatronics, Vol. 1, No. 4, pp. 284-289, 1996.
[14] Hsu, M. H. and Chen, W. R., “On the Design of Speed Function for Improving Torque Characteristics of Cam-Follower Systems,” Proc. 10th World Congress on the Theory of Machine and Mechanisms, pp. 272-277, 1999.
[15] Yao, Y. A., Zhang C., and Yan, H. S., “Motion Control of Cam Mechanisms,” Mechanism and Machine Theory, Vol. 35, No. 4, pp. 593-607, 2000.
[16] Yao, Y. A., Yan, H. S., and Zhang, C., “A Variable-speed Method for Reducing Residual Vibrations in Elastic Cam-Follower Systems,” ASME Transactions, Journal of Dynamic System, Measurement, and Control, Vol. 125, pp. 480-482, 2003.
[17] Wu, L. I., Chang, W. T., and Liu, C. H., “The Design of Varying-velocity Translating Cam Mechanisms,” Mechanism and Machine Theory, Vol. 42, No. 3, pp. 352-364, 2007.
[18] Hsieh, W. H., “An Experimental Study on Cam-controlled Planetary Gear Trains,” Mechanism and Machine Theory, Vol. 42, No. 5, pp. 513-525, 2007.
[19] Yan, H. S. and Tsai, W. J., “A Variable-Speed Approach for Preventing Cam-Follower Separation,” Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol. 2, No. 1, pp. 12-23, 2008.
[20] Yan, H. S. and Tsai, W. J., “Motion Adaptation of Cam-Follower Systems by Varying Input Speeds,” Proceedings of the I MECH E Part C Journal of Mechanical Engineering Science, Vol. 222, No. 3, pp. 459-472, 2008.
[21] Kaplan, R. L. and Rao, S. S., “Goal Programming Approach for the Balancing of Variable Input Speed Mechanisms,” Proceedings of 1987 ASME Design Technology Conferences, DE-Vol. 10-1, pp. 163-172, 1987.
[22] Kochev, I. S., “Full Shaking Moment Balancing of Planar Linkages by a Prescribed Input Speed Fluctuations,” Mechanism and Machine Theory, Vol. 25, No. 4, pp. 459-466, 1990.
[23] Yossifon, S. and Shivpuri, R., “Analysis and Comparison of Selected Rotary Linkage Drives for Mechanical Press,” Int. J. Mach. Tools Manufact., Vol. 33, No. 2, pp. 175-192, 1993.
[24] Yossifon, S. and Shivpuri, R., “Optimization of a Double Knuckle Linkage Drive with Constant Mechanical Advantage for Mechanical Presses,” Int. J. Mach. Tools Manufact., Vol. 33, No. 2, pp. 193-208, 1993.
[25] Yossifon, S. and Shivpuri, R., “Design Considerations for the Electric Servomotor Driven 30 Ton Double Knuckle Press for Precision Forming,” Int. J. Mach. Tools Manufact., Vol. 33, No. 2, pp. 209-222, 1993.
[26] Yan, H. S. and Chen, W. R., ”On the Output Motion Characteristics of Variable Input Speed Servo-controlled Slider-crank Mechanisms,” Mechanism and Machine Theory, Vol. 35, No. 4, pp. 541-561, 2000.
[27] Yan, H. S. and Chen, W. R., ”A Variable Input Speed Approach for Improving the Output Motion Characteristics of Watt-type Presses,” International Journal of Machine Tools & Manufacture, Vol. 40, pp. 675-690, 2000.
[28] Yan, H. S. and Chen, W. R., ”Optimized Kinematic Properties for Stevenson-type Presses with Variable Input Speed Approach,” ASME Transactions, Journal of Mechanical Design, Vol. 124, pp. 350-354, 2002.
[29] Yan, H. S. and Chen, W. R., ”System for Servomotor Driven Press to Permit Performance of Multi Purpose Tasks,” U.S. Patent, No. 6,336,046, 2002.
[30] Kirecci, A. and Dulger, L. C., “A Study on a Hybrid Actuator,” Mechanism and Machine Theory, Vol. 35, No. 4, pp. 1141-1149, 2000.
[31] Dulger, L. C., Kirecci, A., and Topalbekiroglu, M., “Modeling and Simulation of a Hybrid Actuator,” Mechanism and Machine Theory, Vol. 38, No. 5, pp. 395-407, 2003.
[32] Liu, J. Y., Hsu, M. H., and Chen, F. C., “On the Design of Rotating Speed Functions to Improve the Acceleration Peak Value of Ball-Screw Transmission Mechanism,” Mechanism and Machine Theory, Vol. 39, No. 4, pp. 1035-1049, 2001.
[33] Yan, H. S. and Soong, R. C., “Kinematic and Dynamic Design of Four-bar Linkages by Links Counterweighing with Variable Input Speed,” Mechanism and Machine Theory, Vol. 36, No. 9, pp. 1051-1071, 2001.
[34] Yan, H. S. and Soong, R. C., “Kinematic and Dynamic Design of Four-bar Linkages by Mass Retribution with Variable Input Speed,” Journal of the Chinese Society of Mechanical Engineer (Taipei), Vol. 23, No. 4, pp. 321-332, 2002.
[35] Yan, H. S. and Soong, R. C., “An Integrated Design Approach of Four-bar Linkages with Variable Input Speed,” JSME International Journal, Series C, Vol. 47, No. 1, pp. 350-362, 2004.
[36] Lee, J. J. and Cho, C. C., “Improving Kinematic and Structural Performance of Geneva Mechanisms Using the Optimal Control Method,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 216, pp. 761-774, 2002.
[37] Du, R. and Guo, W. Z., “The Design of a New Metal Forming Press with Controllable Mechanism,” ASME Transactions, Journal of Mechanical Design, Vol. 125, pp. 582-592, 2003.
[38] Guo. W. Z., He, K., Yeung, K., and Du, R., “A New Type of Controllable Mechanical Press: Motion Control and Experiment Validation,” ASME Transactions, Journal of Mechanical Design, Vol. 127, pp. 731-742, 2005.
[39] Warnecke, M. and Jouaneh, M., “Bacjlash Compensation in Gear Trains by Means of Open-Loop Modification of the Input Trajectory,” ASME Transactions, Journal of Mechanical Design, Vol. 125, pp. 620-624, 2003.
[40] Yao, Y. A., Yan, H. S., and Zou, H. L., “Dynamic Design of Variable Speed Planar Linkages,” Chinese Journal of Mechanical Engineering (Beiging), Vol. 18, No. 1, pp. 51-54, 2005.
[41] 陳誌峰、邱顯堂,用傅立葉級數決定輸入轉速之四連桿機構最佳平衡設計,中華民國機構與機器原理學會第八屆全國機構與機器設計學術研討會,台北,台灣,第498-505頁,2005年。
[42] Wilson Charles E., and Sadler J. Peter, Kinematics and Dynamics of Machinery, 3rd edition, Pearson Education, Upper Saddle River, 2003.
[43] Zeid, Ibrahim, 1991, CAD/CAM Theory and Practice, McGraw-Hill, Inc., New York.
[44] Kreyszig Erwin, Advanced Engineering Mathematics 8rd, John Wiley & Sons, New York, 1999.
[45] 白友中,凸輪機構之週期性轉速追蹤控制,碩士論文,國立成功大學機械工程學系,台南,台灣,1995。
[46] Jackson, L. B., Signals, System, and Transforms, Addison-Wesley, Reading, Massachusetts, 1991
[47] Minorsky, N., “Directional Stability of Automatically Steered Bodies,” Journal of American Society of Naval Engineers, Vol. 42, No. 2, pp. 280-309, 1922.
[48] Callender, A., Hartree, D. R., and Porter, A., “Time Lag in a Control System,” Phil. Trans. Roy. Soc. London, Vol. 235, No. 756, pp. 415-444, 1936.
[49] Ziegler, J. G. and Nichols, “Optimal Settings for Automatic Controllers,” Transactions of the ASME, Vol. 64, pp. 759-768, 1942.
[50] dSPACE, RTI Reference for DS1102 DSP Controller Board, Release 3.4, dSPACE GmbH, Paderborn, Germany, 2002.
[51] dSPACE, RTI and RTI-MP Implementation Guide: Inserting Custom C Code, Release 3.4, dSPACE GmbH, Paderborn, Germany, 2002.
[52] dSPACE, ControlDesk Experiment Guide, Version 2.0, dSPACE GmbH, Paderborn, Germany, 2001.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊