跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/30 16:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭奐森
研究生(外文):Huan-Sen Peng
論文名稱:改良式柱狀鰭片與渦流產生器對散熱器熱性能增強的研究
論文名稱(外文):Studies on the Thermal Performance Enhancement of Heat Sinks with Modified Pin-Fins and Vortex Generators
指導教授:楊玉姿楊玉姿引用關係
指導教授(外文):Yue-Tzu Yang
學位類別:博士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:161
中文關鍵詞:紊流散熱器計算流體力學電子元件冷卻渦流產生器
外文關鍵詞:heat sinkturbulent flowvortex generatorelectronics coolingcomputational fluid dynamics
相關次數:
  • 被引用被引用:1
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:102
  • 收藏至我的研究室書目清單書目收藏:1
本文主要針對數種散熱器的熱傳增強設計做了一連串的流體流動與熱傳特性數值模擬。在數值計算上,統御方程式是由控制體積法配合有限差分及冪次法則在正交、非等間距的交錯式格點上作離散。並且以SIMPLEC法來求解動量方程式中速度項與壓力項的耦合問題。而對於紊流的結構與運動行為則是以兩種半經驗紊流模式,k-ε紊流模式與RNG k-ε紊流模式來加以描述。在模擬本研究主題之前,吾人先行做了一連串的測試,並與可得的文獻中之實驗結果做比較,藉以驗證本數值模型之可靠性。

本文中研究五種實例,探討雷諾數、鰭片造型及障礙物造型與排列方式對其熱流特性的影響。在第一種實例的主要目的是針對非均一高度鰭片設計對柱狀型散熱器的散熱效益影響來加以探討。在研究中討論的參數有:雷諾數(Re = 15000 and Re = 25000)及鰭片高度設計(Type-b ~ Type-m)。研究結果顯示接點溫度可藉由增加散熱器中間區域的鰭片高度來降低;而適當的非均一高度鰭片設計可降低接觸溫度並同時提升散熱效益。

而本文的第二個研究主題為非均一寬度鰭片設計對柱狀型散熱器散熱效益的影響。在研究中討論的參數有:雷諾數(Re = 5000 ~ Re = 25000)、鰭片高度(H = 35 mm, 40 mm, 45 mm)及鰭片寬度設計(Type-1 ~ Type-5),研究結果顯示流道切割應靠近散熱器中間區域來降低散熱器中間區域的流阻,增加工作流體流進散熱器中間區的量,進而增加熱傳率。而適當的非均一寬度鰭片設計可同時提高散熱器的紐賽數(Nu)及增強係數(COE)。

第三個主題是裝設柱狀鰭片在平板型散熱器上,探討其造型(圓形鰭片/方形鰭片)及排列方式(直列/交錯)對平板型散熱器所造成之影響。研究結果顯示複合型散熱器(compound heat sink)比平板型散熱器具有較佳的整體(synthetical)效益,而由圓形鰭片與平板型散熱器所構成之複合型散熱器又優於方形鰭片。此外,研究結果也顯示直列式排列設計優於交錯式排列設計。

而第四個主題則是針對具圓形鰭片的平板型散熱器之熱流特性做研究,探討鰭片的排列方式(直列/交錯)與混合高度設計。由結果得知複合型散熱器的整體效益較平板型散熱器高,且第三類(Type-3)混合高度鰭片設計又優於其他設計方式。此外,研究結果也顯示直列式排列設計優於交錯式排列設計。

最後,具渦流產生器之平板型散熱器在第五個研究中被提出討論。此研究主要目的為檢視渦流產生器的配置方式對散熱器所造成的影響。渦流產生器擾動氣流,使散熱器內的氣流較為紊亂;而流線開始形成三維旋轉並產生縱向渦旋,因此加強了冷、熱流體的混合進而提升散熱效益。研究結果顯示具渦流產生器之平板型散熱器在渦流產生器攻角角度為0-30時整體效益較佳。

本研究探討鰭片造型設計與裝置柱狀鰭片在平板型散熱器上對改善散熱效益的可行性。而本文所提出的數值模擬結果對散熱器的熱流特性提供了更深入的了解。本研究結果也對熱傳增益對策提供了有價值的資訊。
A series of numerical simulations on the fluid flow and heat transfer characteristics of heat sinks by using different heat transfer enhancement designs have been performed in present study. The governing equations are discretized by using a control-volume-based finite-difference method with a power-law scheme on an orthogonal non-uniform staggered grid. The coupling of the velocity and the pressure terms of momentum equations is solved by the SIMPLEC algorithm. Two semi-empirical turbulence models, namely, the standard k-ε turbulence model and RNG k-ε turbulence model, were employed to describe the turbulent structure and behavior. A series of tests were performed to verify the present numerical model by comparing the results with the available experimental data in the literature.

Five practical cases have been carried out in the study to investigate the effects of Reynolds number, fin shape, the arrangement and the shape of obstacles on fluid flow and heat transfer characteristics. The objective of the first case is to examine the effects of the un-uniform fin height design on the thermal performance of the pin fin heat sink. The parameters include the Reynolds number (Re = 15000 and Re = 25000) and fin height designs (Type-b ~ Type-m). It is found that the junction temperature can be reduced by increasing the fin height near the center of the heat sink. The results also revealed that an adequate un-uniform fin height design could decrease the junction temperature and enhance the thermal performance simultaneously.

The effects of the un-uniform fin width design on the thermal performance of the pin fin heat sink are examined in the second case. The parameters include the Reynolds number (Re = 5000 ~ Re = 25000), fin heights (H = 35 mm, 40 mm, 45 mm), and fin width designs (Type-1 ~ Type-5). The results reveal that the cut of flow channel should be congregated in the center of the heat sink to reduce the flow resistance in the central region. More working fluid could flow into the center of the heat sink to enhance the heat transfer rate. An adequate un-uniform fin width design could increase the Nusselt number and the COE (coefficient of enhancement) of the heat sink simultaneously.

The influences of pin fins embedded in the plate fin heat sink were demonstrated in the third case. The influences of configurations of obstacles include the shape of obstacle (columnar/square pin fin) and the arrangement of obstacle (in-line/staggered). It is found that the compound heat sink has better synthetical performance than the plate fin heat sink. Moreover, the compound heat sink which is composed of plate fin heat sink and columnar pins performs better than the square pins. The results also show that the synthetical performance of the in-line design is superior to the staggered design.

In the fourth case, the investigations of the thermal and hydraulic performance of the plate-columnar pin fin heat sink are discussed in detail with the arrangement of pins (in-line/staggered) and the design of mixed-height pins. The synthetical performance of the PCPFHS is superior to the PFHS, and the mixed-height pins of the PCPFHS (Type-3) is better than the other case. Moreover, the results also show that the synthetical performance of the in-line design is superior to the staggered design.

Finally, the plate fin heat sink with vortex generator is developed in the fifth case. The objective of this study is to examine the effects of the configurations of the vortex generator design. The vortex generator disturbs the airflow and makes the flow in the heat sink more turbulent. The streamlines develop into a three-dimensional screw type and induce the longitudinal vortices, thus enhancing the mixing of the hot and cold fluid and improving the thermal performance. The results show that the synthetical performance of the plate fin heat sink with vortex generator with attack angle of 0-30 is better than the other case.

This study evaluated the possibility of improving the thermal performance by modifying the fin shape and embedding the pin fins in plate fin heat sink. The numerical predictions obtained from this study provide a physical insight into fluid flow and heat transfer characteristics of the heat sink. The results also provide valuable information on heat transfer enhancement strategy.
摘要......................................................i
Abstract................................................iii
誌謝....................................................vii
Table of Contents........................................ix
List of Tables.........................................xiii
List of Figures..........................................xv
Nomenclature............................................xxi

Chapter1 Introduction.....................................1
1.1 Background.......................................1
1.2 Objectives of Present Study......................5
1.3 Dissertation Scope...............................7
Chapter2 Survey of Literature............................13
2.1 Pin Fin and Plate Fin Heat Sink.................13
2.2 Fin Shape Modification..........................18
2.3 Compound Heat Sink..............................21
2.4 Heat Sink with Vortex Generator.................22
2.5 Summary of Literature Survey....................22
Chapter3 Mathematical Formulation........................25
3.1 Governing Equations.............................25
3.2 Mean-Flow Equations.............................26
3.3 Turbulence Model................................28
3.3.1 The Boussinesq Relation.........................28
3.3.2 The Transport Equations.........................29
3.3.3 Near-Wall Model.................................31
3.4 Boundary Conditions.............................33
3.5 Data Reduction..................................34
Chapter4 Numerical Solution..............................37
4.1 Discretization Approach.........................37
4.1.1 Finite Volume Method............................38
4.1.2 Coordinate Transformation.......................38
4.1.3 Grid Generation.................................41
4.1.4 Discretization of the Governing Equations.......43
4.2 Velocity-Pressure Coupling......................48
4.3 Iterative Solution Method.......................49
4.4 Convergence Criterion...........................49
4.5 Verification....................................50
4.5.1 Pin Fin Heat Sink...............................50
4.5.2 Plate Fin Heat Sink.............................50
4.5.3 Plate-Columnar Pin Fin Heat Sink................51
Chapter5 Computational Results and Discussion............57
5.1 Pin Fin Heat Sink with Un-uniform Fin Height Design...................................................57
5.1.1 Computational Domain and Boundary Conditions....57
5.1.2 Solution Parameters.............................59
5.1.3 Grid Refinement.................................59
5.1.4 Fin Shape Study.................................60
5.1.5 A Comprehensive Comparison......................62
5.2 Pin Fin Heat Sink with Un-uniform Fin Width Design...................................................62
5.2.1 Computational Domain and Boundary Conditions....63
5.2.2 Solution Parameters.............................64
5.2.3 Grid Refinement.................................65
5.2.4 Effects of the Impinging Reynolds Number and the Fin Dimensions...........................................65
5.2.5 Effects of the Fin Width Design.................65
5.3 Plate Fin Heat Sink with Columnar/Square Pins...67
5.3.1 Computational Domain and Boundary Conditions....67
5.3.2 Solution Parameters.............................69
5.3.3 Grid Refinement.................................69
5.3.4 Performance Comparison between PFHS and Compound Heat Sink................................................70
5.3.5 Performance Comparison between PCPFHS and PSPFHS ................................................71
5.3.6 Synthetical Comparisons.........................72
5.4 Plate-Columnar Pin Fin Heat Sink with Mixed-Height Pins..............................................73
5.4.1 Computational Domain and Boundary Conditions....73
5.4.2 Solution Parameters.............................75
5.4.3 Grid Refinement.................................75
5.4.4 Performance Comparison between PFHS and PCPFHS ................................................75
5.4.5 Synthetical Comparisons.........................77
5.5 Plate Fin Heat Sink with a Vortex Generator.....78
5.5.1 Computational Domain and Boundary Conditions....78
5.5.2 Solution Parameters.............................80
5.5.3 Grid Refinement.................................80
5.5.4 Effects of Vortex Generator on the Velocity and Temperature Field of the Heat Sink.......................81
5.5.5 Synthetical Comparisons.........................82
Chapter6 Conclusions and Recommendations................143
6.1 Conclusions....................................143
6.1.1 Pin Fin Heat Sink with Un-uniform Fin Height Design..................................................144
6.1.2 Pin Fin Heat Sink with Un-uniform Fin Width Design ...............................................144
6.1.3 Plate Fin Heat Sink with Columnar/Square Pins..145
6.1.4 Plate-Columnar Pin Fin Heat Sink with Mixed-Height Pins.............................................145
6.1.5 Plate Fin Heat Sink with a Vortex Generator....146
6.2 Recommendations................................146
References..............................................149
Publications............................................159
Vita....................................................161
[1]Sansoucy, E., Experimental and Numerical Investigation of the Effects of an Impinging Air Jet on the Heat Transfer Rate from a Parallel Flat Plate Heat Sink, Master Thesis, Queen’s University, Canada, 2003.
[2]Chu, R.C., Simons, R.E., Ellsworth, M.J., Schmidt, R.R., Cozzolino, V., “Review of Cooling Technologies for Computer Products,” IEEE Transactions on Device and Materials Reliability, Vol. 4, no. 4, pp. 568-585, 2004.
[3]Bondili, V.K., Computational Characterization of Impingement Flow in Parallel Plate Heat Sinks, Master Thesis, The University of Texas at Arlington, 2002.
[4]Heffington, S.N., Black, W.Z., Glezer, A., “Vibration-induced Droplet Atomization Heat Transfer Cell for High Heat Flux Applications,” Inter Society Conference on Thermal Phenomena, pp. 408-412, 2002.
[5]Nguyen, T., Mochizuki, M., Mashiko, K., Saito, Y., Sauciuc, I., Boggs, R., “Advanced Cooling System using Miniature Heat Pipes in Mobile PC,” IEEE Transactions on Components and Packaging Technology, Vol. 23, no. 1, pp. 86-90, 2000.
[6]Haq, R.F.B., Akintunde, K., Probert, S.D., “Thermal Performance of a Pin-Fin Assembly,” International Journal of Heat and Fluid Flow, Vol. 16, pp. 50-55, 1995.
[7]Ledezma, G., Morega, A.M., Bejan, A., “Optimal Spacing between Pin Fins with Impinging Flow,” Journal of Heat Transfer, Vol. 118, pp. 570-577, 1996.
[8]Sathe, S., Kelkar, K.M., Karki, K.C., Tai, C., Lamb, C., Patankar, S.V., “Numerical Prediction of Flow and Heat Transfer in an Impingement Heat Sink,” Journal of Electronic Packaging, Vol. 119, pp. 58-63, 1997.
[9]Brignoni, L.A., Garimella, S.V., “Experimental Optimization of Confined Air Jet Impingement on a Pin Fin Heat Sink,” IEEE Transactions on Components and Packaging Technologies, Vol. 22, no. 3, pp. 399-404, 1999.
[10]Maveety, J.G., Hendricks, J.F., “A Heat Sink Performance Study Considering Material, Geometry, Reynolds Number with Air Impingement,” Journal of Electronic Packaging, Vol. 121, pp. 156-161, 1999.
[11]Hwang, J.J., Lui, C.C., “Detailed Heat Transfer Characteristic Comparison in Straight and 90-deg Turned Trapezoidal Ducts with Pin-Fin Arrays,” International Journal of Heat and Mass Transfer, Vol. 42, pp. 4005-4016, 1999.
[12]Hwang, J.J., Lui, C.C., “Measurement of End Wall Heat Transfer and Pressure Drop in a Pin-Fin Wedge Duct,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 877-889, 2002.
[13]Maveety, J.G., Jung, H.H., “Design of an Optimal Pin-Fin Heat Sink with Air Impingement Cooling,” International Communications in Heat and Mass Transfer, Vol. 27, no. 2, pp. 229-240, 2000.
[14]El-Sheikh, H.A., Garimella, S.V., “Enhancement of Air Jet Impinging Heat Transfer Using Pin-Fin Heat Sinks,” IEEE Transactions on Components and Packaging Technologies, Vol. 23, no. 2, pp. 300-308, 2000.
[15]Guglielmini, G., Misale, M., Schenone, C., “Boiling of Saturated FC-72 on Square Pin Fin Arrays,” International Journal of Thermal Sciences, Vol. 41, pp. 599-608, 2002.
[16]Lee, H.L., Chou, H.M., Yang, Y.C., “The Function Estimation in Predicting Heat Flux of Pin Fins with Variable Heat Transfer Coefficients,” Energy Conversion and Management, Vol. 45, pp. 1749-1758, 2004.
[17]Li, H.Y., Chen, K.Y., “Thermal-Fluid Characteristics of Pin-Fin Heat Sinks Cooled by Impinging Jet,” Journal of Enhanced Heat Transfer, Vol. 12, no. 2, pp. 189-201, 2005.
[18]Kobus, C.J., Oshio, T., “Development of a Theoretical Model for Predicting the Thermal Performance Characteristics of a Vertical Pin-fin Array Heat Sink under Combined Forced and Natural Convection,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 1053-1063, 2005.
[19]Kobus, C.J., Oshio, T., “Predicting the Thermal Performance Characteristics of Staggered Vertical Pin Fin Array Heat Sinks under Combined Mode Radiation and Mixed Convection with Impinging Flow,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 2684-2696, 2005.
[20]Issa, J.S., Ortega, A., “Experimental Measurements of the Flow and Heat Transfer of a Square Jet Impinging on an Array of Square Pin Fins,” Journal of Electronic Packaging, Vol. 128, pp. 61-70, 2006.
[21]Chiang, K.T., Chang, F.P., “Application of Response Surface Methodology in the Parametric Optimization of a Pin-Fin Type Heat Sink,” International Communications in Heat and Mass Transfer, Vol. 33, pp. 836-845, 2006.
[22]Chiang, K.T., Chang, F.P., Tsai, T.C., “Optimum Design Parameters of Pin-Fin Heat Sink Using the Grey-Fuzzy Logic Based on the Orthogonal Arrays,” International Communications in Heat and Mass Transfer, Vol. 33, pp. 744-752, 2006.
[23]T.M., Jeng, “A Porous Model for the Square Pin-Fin Heat Sink Situated in a Rectangular Channel with Laminar Side-Bypass Flow,” International Journal of Heat and Mass Transfer, Vol. 51, pp. 2214-2226, 2008.
[24]Linton, R.L., Agonafer, D., “Coarse and Detailed CFD Modeling of a Finned Heat Sink,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Vol. 18, no. 3, pp. 517-520, 1995.
[25]Sata, Y., Iwasaki, H., Ishizuka, M., “Development of Prediction Technique for Cooling Performance of Finned Heat Sink in Uniform Flow,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Vol. 20, no. 2, pp. 160-166, 1997.
[26]Leon, O., Mey, G.D., Dick, E., Vierendeels, J., “Comparison Between the Standard and Staggered Layout for Cooling Fins in Forced Convection Cooling,” Journal of Electronic Packaging, Vol. 125, pp. 442-446, 2003.
[27]Sansoucy, E., Oosthuizen, P.H., Ahmed, G.R., “An Experimental Study of the Enhancement of Air-Cooling Limits for Telecom/Datacom Heat Sink Applications Using an Impinging Air Jet,” Journal of Electronic Packaging, Vol. 128, pp. 166-171, 2006.
[28]Duan, Z., Muzychka, Y.S., “Experimental Investigation of Heat Transfer in Impingement Air Cooled Plate Fin Heat Sinks,” Journal of Electronic Packaging, Vol. 128, pp. 412-418, 2006.
[29]Wakil, J., “Thermal Performance Impacts of Heat Spreading Lids on Flip Chip Packages: with and without Heat Sinks,” Microelectronics Reliability, Vol. 46, pp. 380-385, 2006.
[30]Jonsson, H., Palm, B., “Thermal and Hydraulic Behavior of Plate Fin and Strip Fin Heat Sinks under Varying Bypass Conditions,” IEEE Transactions on Components and Packaging Technologies, Vol. 23, no. 1, pp. 47-54, 2000.
[31]Jonsson, H., Moshfegh, B., “Modeling of the Thermal and Hydraulic Performance of Plate Fin, Strip Fin, and Pin Fin Heat Sinks-Influence of Flow Bypass,” IEEE Transactions on Components and Packaging Technologies, Vol. 24, no. 2, pp. 142-149, 2001.
[32]Narasimhan, S., Majdalani, J., “Characterization of Compact Heat Sink Models in Natural Convection,” IEEE Transactions on Components and Packaging Technologies, Vol. 25, no. 1, pp. 78-86, 2002.
[33]Li, H.Y., Chao, S.M., Tsai, G.L., “Thermal Performance Measurement of Heat Sinks with Confined Impinging Jet by Infrared Thermography,” International Journal of Heat and Mass Transfer, Vol. 48, pp. 5386-5394, 2005.
[34]Li, H.Y., Chen, K.Y., “Thermal Performance of Plate-Fin Heat Sinks under Confined Impinging Jet Conditions,” International Journal of Heat and Mass Transfer, Vol. 50, pp. 1963-1970, 2007.
[35]Kim, S.J., Kim, D.K., Oh, H.H., “Comparison of Fluid Flow and Thermal Characteristics of Plate-Fin and Pin-Fin Heat Sinks Subject to a Parallel Flow,” Heat Transfer Engineering, Vol. 29, pp. 169-177, 2008.
[36]Ledezma, G., Bejan, A., “Heat Sinks with Sloped Plate Fins in Natural and Forced Convection,” International Journal of Heat and Mass Transfer, Vol. 39, no. 9, pp. 1773-1783, 1996.
[37]Leon, O., Mey, G.D., Dick, E., “Study of the Optimal Layout of Cooling Fins in Forced Convection Cooling,” Microelectronics Reliability, Vol. 42, pp. 1101-1111, 2002.
[38]Leon, O.A., Mey, G.D., Dick, E., Vierendeels, J., “Staggered Heat Sinks with Aerodynamic Cooling Fins,” Microelectronics Reliability, Vol. 44, pp. 1181-1187, 2004.
[39]Sathe, S.B., Sammakia, B.G., “An Analytical Study of the Optimized Performance of an Impingement Heat Sink,” Journal of Electronic Packaging, Vol. 126, pp. 528-534, 2004.
[40]Shah, A., Sammakia, B.G., Srihari, H., Ramakrishna, K., “A Numerical Study of the Thermal Performance of an Impingement Heat Sink-Fin Shape Optimization,” IEEE Transactions on Components and Packaging Technologies, Vol. 27, no. 4, pp. 710-717, 2004.
[41]Shah, A., Sammakia, B.G., Srihari, K., Ramakrishna, K., “Optimization Study for a Parallel Plate Impingement Heat Sink,” Journal of Electronic Packaging, Vol. 128, pp. 311-318, 2006.
[42]Lorenzini, G., Moretti, S., “Numerical Analysis on Heat Removal from Y-shaped Fins: Efficiency and Volume Occupied for a New Approach to Performance Optimisation,” International Journal of Thermal Sciences, Vol. 46, pp. 573-579, 2007.
[43]Naphon, P., Sookkasem, A., “Investigation on Heat Transfer Characteristics of Tapered Cylinder Pin Fin Heat Sinks,” Energy Conversion and Management, Vol. 48, pp. 2671-2679, 2007.
[44]Ji, T.H., Kim, S.Y., Hyun, J.M., “Pressure Drop and Heat Transfer Correlations for Triangular Folded Fin Heat Sinks,” IEEE Transactions on Components and Packaging Technologies, Vol. 30, no. 1, pp. 3-8, 2007.
[45]Wee, H., Zhang, Q., Ligrani, P.M., Narasimhan, S., “Numerical Predictions of Heat Transfer and Flow Characteristics of Heat Sinks with Ribbed and Dimpled Surfaces in Laminar Flow,” Numerical Heat Transfer, Part A: Application, Vol. 53, pp. 1156-1175, 2008.
[46]Kou, H.S., Lee, J.J., Chen, C.W., “Optimum Thermal Analysis of a Heat Sink with Various Fin Cross-Sections by Adjusting Fin Length and Cross-Section,” Heat Transfer Engineering, Vol. 29, no. 6, pp. 537-545, 2008.
[47]Yu, X.L., Feng, Q.K., Liu, Q.P., “Research on the Heat Transfer and Flow Performance of a Composite Heat Sink,” Journal of Xi’an Jiaotong University, Vol. 37, no. 4, pp. 670-673, 2003. (in Chinese)
[48]Yu, X.L., Feng, Q.K., Feng, J.M., “Research on Thermal Performance of Plate-Pin Fin Heat Sink,” Journal of Xi’an Jiaotong University, Vol. 38, no. 11, pp. 1114-1118, 2004. (in Chinese)
[49]Yu, X.L., Feng, J.M., Feng, Q.K., Wang, Q.W., “Development of a Plate-Pin Fin Heat Sink and Its Performance Comparisons with a Plate Fin Heat Sink,” Applied Thermal Engineering, Vol. 25, pp. 173-182, 2005.
[50]Zhao, Y.H., Chai, C.X., Luo, Z.M., “Numerical Simulation Study on Heat Transfer Characteristics of Plate-Pin Fin Oil Cooler,” Design & Manufacture of Diesel Engine, Vol. 14, no. 4, pp. 13-15, 2005. (in Chinese)
[51]Hernon, D., “Effect of Upstream Vortex Generators on a Longitudinally-Finned Heat Sink,” Thermal and Thermomechanical Phenomena in Electronic System, May, pp. 480-488, 2008.
[52]Park, K., Choi, D.H., Lee, K.S., “Shape Optimization of a Plate-Fin Type Heat Sink for High Performance,” ASME International Mechanical Engineering Congress, Anaheim, CA, November 13-19, 2004.
[53]Park, K., Choi, D.H., “Shape Optimization of a Plate-Fin Type Heat Sink with Triangular-Shaped Vortex Generator,” KSME International Journal, Vol. 18, no. 9, pp. 1590-1603, 2004.
[54]Park, K., Oh, P.K., Lim, H.J., “The Application of the CFD and Kriging Method to an Optimization of Heat Sink,” International Journal of Heat and Mass Transfer, Vol. 49, pp. 3439-3447, 2006.
[55]Reynolds, O., “On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion,” Philosophical Transactions of the Royal Society of London, Series A, Vol. 186, pp. 123-164, 1895.
[56]Launder, B.E., Spalding, D.B., “The Numerical Computation of Turbulent Flows,” Computer Methods in Applied Mechanics and Engineering, Vol. 3, pp. 269-289, 1974.
[57]Yakhot, V., Orszag, S.A., “Renormalization Group Analysis of Turbulence,” Journal of Scientific Computing, Vol. 1, no. 1, pp. 3-51, 1986.
[58]Yakhot, V., Orszag, S.A., Thangam, S., Speziale, C.G., Gatski, T.B., “Development of Turbulence Models for Shear Flows by a Double Expansion Technique,” Physics of Fluid A, Vol. 4, pp. 1510-1520, 1992.
[59]Sparrow, E.M., Ramsey, J.W., Altemani, C.A.C., “Experiments on In-line Pin Fin Arrays and Performance Comparisons with Staggered Arrays,” Journal of Heat Transfer, Vol. 102, pp. 44-50, 1980.
[60]Thompson, J.F., Thames, F.C., Mastin, C.W., “Automatic Numerical Generation of Body-Fitted Curvilinear Coordinate System for Field Containing Any Number of Arbitrary Two-Dimensional Bodies,” Journal of Computational Physics, Vol. 15, pp. 299-319, 1974.
[61]Thomas, P.D., “Composite Three-Dimensional Grids Generated by Elliptic System,” AIAA Journal, Vol. 20, pp. 1195-1202, 1982.
[62]Yang, C.H., Computational Fluid Dynamics Study of Lower Urinary Tract System Based on Medical Imaging Technology, Master Thesis, National Tsing Hua University, Taiwan, 2002.
[63]Wu, B.X., Gebremedhin, K.G., “Numerical Simulation Flow Field around a Cow Using 3-D Body-Fitted Coordinate System,” Journal of Thermal Biology, Vol. 26, pp. 563-573, 2001.
[64]Thompson, J.F.,. Warsi, Z.U.A, Mastin, C.W., Numerical grid generation: foundations and applications, Elsevier Science Pub. Co., New York, 1985.
[65]Patankar, S.V., Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.
[66]Versteeg, H.K., Malalasekera, W., An Introduction to Computational Fluid Dynamics-The Finite Volume Method, Longman, London, 1995.
[67]Tannehill, J.C., Anderson, D.A., Pletcher, R.H., Computational Fluid Mechanics and Heat Transfer, Taylor & Francis, Levittown, 1997.
[68]Ferziger, J.H., Peric, M., Computational Methods for Fluid Flow, Springer Verlag, New York, 2002.
[69]Chung, T.J., Computational Fluid Dynamics, Cambridge University Press, Cambridge, UK, 2002.
[70]Van Doormaal, J.P., Raithby, F.D., “Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows,” Numerical Heat Transfer, Part A: Applications, Vol. 7, pp. 147-163, 1984.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊