跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/11 22:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李俊億
研究生(外文):Chung-yi Lee
論文名稱:遮罩植入式奈米壓印技術應用於製作大面積微/奈米結構
論文名稱(外文):Mask Embedded Nano-Imprinting Technology for the Fabrication of Large-Area Micro/Nano-Structures
指導教授:李永春李永春引用關係
指導教授(外文):Yung-chun Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:137
中文關鍵詞:接觸轉印大面積轉印奈米壓印可撓性ETFE
外文關鍵詞:contactflexibilityETFEnano-imprintinglarge-area transfer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:600
  • 評分評分:
  • 下載下載:136
  • 收藏至我的研究室書目清單書目收藏:0
本文使用具有低表面能及可撓曲特性之乙烯-四氟乙烯 (Ethylene Tetrafluoroethylene, ETFE) 翻製六吋模仁;利用ETFE模仁的可撓曲特性達到模仁與基板完整接觸之目的,並且在不作抗沾黏處理的情況下可重覆執行接觸轉印光罩植入式奈米顯影技術 (Contact-Transfer and Mask Embedded Lithography, CMEL)。本技術已成功完成3.8×4.7 cm2大面積轉印,定義之最小線寬為60 nm,並且透過此技術完成有機薄膜電晶體以及可撓式偏光片之製作。
另外,本文利用ETFE模仁執行熱壓成型奈米壓印 (Hot Embossing Nano-Imprinting Lithography, HE-NIL) 及紫外光固化成型奈米轉印 (UV-cured Nano-Imprint Lithography, UV-NIL)。在HE-NIL的部份,成功完成6吋大面積轉印,並且定義最小線寬為65 nm;在UV-NIL的部份,則是利用紫外線固化式奈米滾輪機執行UV連續滾印製程,成功完成6吋面積之連續轉印,並且定義最小尺寸為200 nm之孔洞結構。
ETFE模仁具有低表面能之特性,無須進行抗沾黏層之處理,進而減少製程程序,增加模仁壓印與轉印時的使用壽命;同時具有翻模容易、可撓曲特性、及可重覆使用...等優勢,可以大幅降低製程成本,並將各種奈米壓印與轉印技術,推向更接近實用化與產業化的目標。
In this thesis, ethylene tetrafluoroethylene (ETFE) film is selected as mold material to replicate a six-inch silicon mold because of its low surface energy and flexibility. These properties ensure complete and intimate contact between mold and substrate, and therefore can perform Contact-transferred and Mask Embedded Lithography (CMEL) without any anti-adhesion treatment. Through the CMEL process, the largest transferred area has achieved 3.8×4.7 cm2 and the smallest feature size is 60 nm. Based on this method, organic thin film transistors and flexible polarizers are successfully fabricated.
Furthermore, this work has applied the replicated ETFE molds on other types of nano-imprinting methods, namely, the Hot Embossing Nano-Imprinting Lithography (HE-NIL) and UV-curing Nano-Imprinting Lithography (UV-NIL). In HE-NIL process, the largest transferred area and the smallest feature size achieve 6 in. wafer-size and 65 nm, respectively. In UV-NIL process, we use a UV-curing roller-type nano-imprinter to carry out continuous roll-to-roll process. Successful pattern transfer of a 6” mold is achieved and the smallest feature size of 200 nm hole-array pattern has defined.
The unique material properties of ETFE, such as low surface energy, flexibility, high strength and toughness, and deformability, have made it a best mold candidate for nano-imprinting and contact-printing methods. This thesis has shown that using ETFE molds can resolve many serious issues in nano-imprinting and contact-printing of micro/nano-structures and therefore can bring these to real industrial applications.
摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VII
表目錄 XVII
第一章 緒論 ......................................1
1-1 文獻回顧 ......................................1
1-2 研究動機 .....................................12
1-3 本文架構 .....................................14
第二章 機台開發與實驗模仁製備 ....................15
2-1 奈米壓印機台的設計 ...........................15
2-2 次微米級矽模仁製備 ...........................24
2-3 奈米級矽模仁製備 .............................28
2-4 ETFE模仁製備流程 .............................32
2-5 影響ETFE模仁製作良率的因素 ...................34
2-6 ETFE模仁翻印結果與討論 .......................47
第三章 ETFE模仁之熱壓成型奈米壓印 ................56
3-1熱壓成型奈米壓印製程 ..........................57
3-2 熱壓成型奈米壓印之結果討論 ...................60
第四章 ETFE模仁之紫外光固化成型奈米轉印 ..........71
4-1紫外光固化成型奈米轉印製程 ....................72
4-2 連續滾印之大面積紫外光固化成型奈米轉印 .......78
第五章 ETFE模仁之接觸轉印光罩植入式奈米顯影技術 ..85
5-1 接觸轉印光罩植入式奈米顯影技術製程 ...........85
5-3 曲面式接觸轉印光罩植入式奈米顯影技術 ........103
第六章 元件應用 .................................107
6-1 有機薄膜電晶體 ..............................107
6-2 可撓性偏光片 ................................121
第七章 結論與未來展望 ...........................128
7-1結論 .........................................128
7-2未來展望 .....................................130
參考文獻 ........................................134
[1] G. M. McClelland, M. W. Hart, C. T. Rettner, M. E. Best, K. R. Carter, B. D. Terris, “Nanoscale patterning of magnetic islands by imprint lithography using a flexible mold,” Applied Physics Letters 81, p. 1483. (2002)

[2] D. G. Choi, S. Kim, S. G. Jang, S. M. Yang, J. R. Jeong, and S. C. Shin, “Nanopatterned Magnetic Metal via Colloidal Lithography with Reactive Ion Etching,” Chemistry of Materials 16, p. 4208. (2004)

[3] S. H. Kim, K. D. Lee, J. Y. Kim, M. K. Kwon and S. J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18, p. 55306. (2007)

[4] W. K. Wanga, D. S. Wuua, S.H. Lina, S. Y. Huanga, K. S. Wena, R. H. Horng, “Growth and characterization of InGaN-based light-emitting diodes on patterned sapphire substrates,” Journal of Physics and Chemistry of Solids 69, p. 714. (2008)

[5] M. G. Kang, M. S. Kim, J. Kim, and L. Jay Guo, “Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes,” Advanced Materials 20, p. 4408. (2008)

[6] H. J. Her, J. M. Kim, C. J. Kang, Y. S. Kim, “Hybrid photovoltaic cell with well-ordered nanoporous titania–P3HT by nanoimprinting lithography,” Journal of Physics and Chemistry of Solids 69, p. 1301. (2008)

[7] X. Cheng, Y. Hong, J. Kanicki, and L. J. Guo, “High-resolution organic polymer light-emitting pixels fabricated by imprinting technique,” The Journal of Vacuum Science and Technology B 20, p. 6. ( 2002)

[8] S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee and P. W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, p. 1874. (2005)

[9] Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Applied Physics Letters 77, p. 7. (2000)

[10] S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Applied Physics Letters 67, p. 3114. (1995)

[11] S. Y. Chou, P. R. Krauss, P. J. Renstrom, “Nanoimprint lithography,” Journal of Vacuum Science and Technology B 14, p. 4129. (1995)

[12] M. Bender, M. Otto, B. Hadam, B. Vratzov, B. Spangenberg, and H. Kurz, “Fabrication of nanostructures using a UV-based imprinttechnique,” Microelectronic Engineering 59, p. 233. (2000).


[13] M.Otto, M. Bender, B. Hadam, B. Vratzov, B. Spangenberg, and H. Kurz, “Characterization and application of a UV-based imprint technique,” Microelectronic Engineering 57, p. 361. (2001).

[14] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake, T. Michaelson, S. V. Sreenivason, J. Ekerdt, and C. G. Willson, “Step and flash imprint lithography : a new approach to high-resolution patterning,” Proceedings of the SPIE’s 24th International Symposium on Microlithography : Emerging Lithography Technologies Ⅲ, Santa Clara, CA 3676, p. 379. (1999).

[15] Y. C. Lee, C. Y. Chiu, “A New Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching” J. Micromech. Microeng 18, p. 075013. (2008)

[16] S. H. Ahn, J. S. Kim , L. J. Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate,” The Journal of Vacuum Science and Technology B 25, No6. (2007)

[17] S. H. Ahn, L. J. Guo, “High-Speed Roll-to-Roll Nanoimprint Lithography on Flexible Plastic Substrates,” Advanced Materials 9999, p. 1. (2008)

[18] S. H. Ahn, L. J. Guo, “High-speed Roll-to-Roll Nanoimprint Lithography on Flexible Substrate and Mold-separation Analysis,” Proceedings of SPIE 7205, p. 72050U-1. (2009)
[19] David R. Barbero, Mohammad S. M. Saifullah, Patrik Hoffmann, Hans Jörg Mathieu, David Anderson, Geraint A. C. Jones, Mark E. Welland, and Ullrich Steiner, “High Resolution Nanoimprinting with a Robust and Reusable Polymer Mold,” Advanced Functional Materials 17, p. 2419. (2007)

[20] 張學良,紅外雷射輔助式金屬轉印技術,國立成功大學奈米科技暨微系統工程研究所碩士論文, 民國97年.

[21] Carl G. Chen, Paul T. Konkola, Ralf K. Heilmann, G. S. Pati, and Mark L. Schattenburg, “Image metrology and system controls for scanning beam interference lithography,” Journal of Vacuum Science and Technology B 19, p. 6. ( 2001)

[22] 楊忠諺, “機薄膜電晶體簡介”,真空科技,十七卷四期(10)

[23] 楊朝宇,“介面層表面特性對有機薄膜電晶體的電性影響研究”,國立成功大學光電科學與工程研究所碩士論文,民國96年.

[24] 余適伯,“具奈米結構介電層之有機薄膜電晶體”,國立成功大學光電科學與工程研究所碩士論文,民國98年.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top