跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/10 06:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余德輝
研究生(外文):Te-hui Yu
論文名稱:紅外光輔助式金屬直接滾印技術應用於大面積可撓性光學元件
論文名稱(外文):Infrared-Assisted and Roller-Based Direct Metal Printing Technology with Application to Large-Area Flexible Optical Devices
指導教授:李永春李永春引用關係
指導教授(外文):Yung-Chun Lee
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:107
中文關鍵詞:偏光片可撓性奈米圖形金屬薄膜滾印可撓性元件
外文關鍵詞:Roller ImprintingNano-patternFlexible DeviceMetal Printing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:314
  • 評分評分:
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
本文發展一種新型的微/奈米結構製程技術,以紅外光加熱與滾筒加壓的方式,將矽模仁上預先定義之微/奈米圖形的金屬層直接轉印至可撓性基板上。本文採用PET光學膜作為可撓性基板,將PET基板與已蒸鍍金屬層之矽模仁進行接觸對壓,利用紅外燈管照射的方式對金屬層加熱,再經由熱傳導加熱其接觸之PET基板,以軟化PET基板並與金屬轉印層產生黏結;透過滾筒施壓與搭配基板的可撓性,可以將次微米與奈米尺度之金屬層圖形完整且大面積地轉印至可撓性基板上。
本研究已經成功完成最小線寬 60 nm、最大面積4 × 4 cm2 的金屬轉印;利用此技術將具有週期性之直線式金屬光柵結構直接定義於PET基板上,可以製作出可撓性的偏光片。本文以實驗的方式,探討最佳的製程參數、機構設計、與材料選擇,以得到最佳的微/奈米結構製程結果;最後,針對本製程所完成的可撓性偏光片,以光學模擬與實驗光譜量測,驗證其光學特性。
紅外光輔助式金屬直接滾印技術能夠將奈米等級金屬圖形直接轉印至可撓性基板上,無須後續的蝕刻與舉離製程,避免高分子基板受損的風險,除了可簡化製程、降低成本,更具有環保的概念,可視為一種製作可撓性元件的理想方法,並且具有龐大的商業價值。
This thesis proposes a new micro/nano-fabrication method which can directly transfer a patterned metal film from a silicon mold to a flexible polymeric substrate based on infrared optical heating and roller-based contact loading. The PET film is chosen as the flexible substrate and a silicon mold with pre-defined surface features in micro- and nano-scale is coated with a anti-adhesion layer and then a thin metallic film. A roller-loading mechanism is designed to bring the PET and the silicon mold into intimate contact while an infrared lamp can heat up the metal film through thermal radiation. The heated and patterned metallic film can then emboss into its adjacent PET material and therefore complete the pattern transformation.
In this thesis, we demonstrate successful pattern transformation with smallest line-width of 60 nm and a area size of 4x4 cm2. Linear grating structure is embedded into PET substrate which forms a flexible optical polarizer. Experimental investigation have be carried out to identify the best imprinting parameters, mechanism design, as well as material combination to optimize the effects of this IR-heating and roller imprinting pattern transformation.
The proposed method has several unique advantages: nano-scale and large-area patterning capability, direct pattern transformation without chemical etchings, fast processing and low-cost and easiness in implementation using simple setups. Therefore, it has great potential for mass-production of micro/nano-structures and for industrial applications.
摘要 I
Abstract III
致謝 IV
目錄 V
圖目錄 VIII
表目錄 XVI
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 3
1-3 研究動機與目的 11
第二章 實驗原理與架構 13
2-1 紅外光輔助金屬滾印於可撓性基材原理 13
2-2 紅外光輔助金屬滾印於可撓性基材實驗架構 16
第三章 實驗步驟 24
3-1 母模仁製備 24
3-1.1 矽模仁製作 24
3-1.2 矽模仁切割與清洗 27
3-1.3 矽模仁之抗沾黏膜處理 28
3-1.4 矽模仁之轉印金屬薄膜蒸鍍 33
3-2 紅外光輔助式金屬直接滾印製程 36
3-3 蝕刻製程 38
第四章 實驗結果與討論 40
4-1 矽模仁製作結果 40
4-2 金屬轉印結果 49
4-3 製程參數分析 57
4-3.1 金屬植入基板深度之壓印參數探討 57
4-3.2 不同金屬材料與轉印成功率之探討 60
4-3.3 反應式離子蝕刻分析 63
第五章 元件應用 67
5-1 利用奈米壓印技術製作偏光片 67
5-2 可撓性偏光片製作 74
5-2.1 可撓性穿射式偏光片製作 77
5-2.2 可撓性反射式偏光片製作 86
5-3 光學模擬與分析 89
第六章 結論與未來展望 99
6-1 結論 99
6-2 未來展望 102
參考文獻 103
[1]“10 Emerging Technologies That Will Change the World,” Technology Review (2003).
[2] G. M. McClelland, M. W. Hart, C. T. Rettner, M. E. Best, K. R. Carter and B. D. Terris, “Nanoscale patterning of magnetic islands by imprint lithography using a flexible mold,” Applied Physics Letters 81, p. 1483 (2002).
[3] D. G. Choi, S. Kim, S. G. Jang, S. M. Yang, J. R. Jeong and S. C. Shin, “Nanopatterned magnetic metal via colloidal lithography with reactive ion etching,” Chemistry of Materials 16, p. 4208 (2004).
[4] S. H. Kim, K. D. Lee, J. Y. Kim, M. K. Kwon and S. J. Park, “Fabrication of photonic crystal structures on light emitting diodes by nanoimprint lithography,” Nanotechnology 18, p. 055306 (2007).
[5]W. K. Wang, D. S. Wuu, S. H. Lin, S.Y. Huang, K.S. Wen and R.H. Horng, “Growth and characterization of InGaN-based light-emitting diodes on patterned sapphire substrates,” Journal of Physics and Chemistry of Solids 69, p. 714 (2008).
[6] S. Y. Chou, P. R. Krauss and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Applied Physics Letters 67, p. 3114 (1995).
[7] Y. Kanamori, M. Shimono and K. Hane, “Fabrication of transmission color filters using silicon subwavelength gratings on quartz substrate,” IEEE Photonics Technology Letters 18, p. 2126 (2006).
[8] Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, J. D. Park and K. D. Lee, “Color filter incorporating a subwavelength patterned grating in poly silicon,” Optics Express 16, p. 2374 (2008).
[9] M. G. Kang, M. S. Kim, J. Kim and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Advanced Materials 20, p. 4408 (2008).
[10]H. J. Her, J. M. Kim, C. J. Kang, Y. S. Kim, “Hybrid photovoltaic cell with well-ordered nanoporous titania-P3HT by nanoimprinting lithography,” Journal of Physics and Chemistry of Solids 69, p. 1301 (2008).
[11]S. Y. Chou, P. R. Krauss and P. J. Renstrom, “Nanoimprint lithography,” Journal of Vacuum Science and Technology B 14, p. 4129 (1996).
[12]S. Y. Chou, K. Chris and J. Gu, “Ultrafast and direct imprint of nanostructures in silicon,” Nature 417, p. 835 (2002).
[13]M. D. Austin, H. Ge, W. Wu, M. Li, Z. Yu, D. Wasserman, S. A. Lyon and S. Y. Chou, “Fabrication of 5nm linewidth and 14nm pitch features by nanoimprint lithography,” Applied Physics Letters 84, p. 5299 (2004).
[14]H. Gao, H. Tan, W. Zhang, K. Morton and S. Y. Chou, “Air cushion press for excellent uniformity, high yield and fast nanoimprint across a 100 mm field,” Nano Letters 6, p. 2438 (2006).
[15]M. Colburn, A. Grot, M. Amistoso, B. J. Choi, T. Bailey, J. Ekerdt, S. V. Sreenivason, J. Hollenhorst and C. G. Willson, “Step and flash imprint lithography for sub-100 nm patterning,” 2000 SPIE’s 25th International Symposium Microlithography: Emerging Lithography Technologies Ⅲ. Feb. 28-Mar. 3, 2000 Santa Clara, CA.
[16] T. Bailey, B. J. Choi, M. Colburn, A. Grot, M. Meissl, S. Shaya, J. G. Ekerdt, S. V. Sreenivason and C. G. Willson, “Step and flash imprint lithography: template surface treatment and defect analysis,” Journal of Vacuum Science and Technology B 18, p. 3572 (2000).
[17] T. K. Whidden, D. K. Ferry, M. N. Kozicki, E. Kim, A. Kumar, J. Wilbur and G. M. Whitesides, “Pattern transfer to silicon by microcontact printing and RIE,” Nanotechnology 7, p. 447 (1996).
[18]D. W. Wang, S. G. Thomas, K. L. Wang, Y. Xia and G. M. Whitesides, “Nanometer scale patterning and pattern transfer on amorphous Si, crystalline Si and SiO2 surfaces using self-assembled monolayers,” Applied Physics Letters 70, p. 1593 (1997).
[19] X. M. Zhao, Y. Xia and G. M. Whitesides, “Soft lithography methods for nano-fabrication,” Journal of Materials Chemistry 7, p. 1069 (1997).
[20] Y. Xia and G. M. Whitesides, “Soft lithography,” Angewandte Chemie International Edition 37, p. 550 (1998).
[21]C. Kim, M. Shtein and S. R. Forrest, “Nanolithography based on patterned metal transfer and its application to organic electronic device,” Applied Physics Letters 80, p. 4051 (2002).
[22]C. Kim, P. E. Burrows, S. R. Forrest, “Micropatterning of organic electronic devices by cold-welding,” Science 288, p. 831 (2000).
[23]C. Kim and S. R. Forrest, “Fabrication of organic light-emitting devices by low-pressure cold welding,” Advanced Materials 15, p. 541 (2003).
[24] Y. Cao, C. Kim, S. R. Forrest and W. Soboyejo, “Effects of dust particles on organic electronic devices fabricated by stamping,” Applied Physics Letters 98, p. 033713 (2005).
[25] C. H. Chen and Y. C. Lee, “Contact printing for direct metallic pattern transfer based on pulsed infrared laser heating,” Journal of Micromechanics and Microengineering 17, p. 1252 (2007).
[26] Y. C. Lee, C.Y. Chiu and F. B. Hsiao, “Laser assisted roller imprinting,” The 2nd Annual IEEE International Conference on Nano/Micro Engineered and Molecular System, Jan. 2007, Bangkok, Thailand.
[27] S. Y. Chou, C. Keimel and J. Gu, “Ultrafast and direct imprint of nanostructures in Silicon,” Nature 417, p. 835 (2002).
[28] C. G. Chen, P. T. Konkola, R. K. Heilmann, G. S. Pati and Mark L. Schattenburg, “Image metrology and system controls for scanning beam interference lithography,” Journal of Vacuum Science and Technology B 19, p. 6 (2001).
[29] J. M. Carter, R. C. Fleming, T. A. Savas, M. E. Walsh and T. B. O’Reilly, “Interference lithography,” MTL Annual Report, p. 186 (2003).
[30] M. Beck, M. Graczyk, I. Maximov , E. L. Sarwe , T. G. I. Ling , M. Keil and L. Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint lithography,” Microelectronic Engineering 61, p. 441 (2002).
[31] J. S. Kima and L. Jay Guo, “Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on exible plastic substrate,” Journal of Vacuum Science and Technology B 25, p. 2388 (2007).
[32] Z. Yu, P. Deshpande, W. Wu, J. Wang and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Applied Physics Letters 77, p. 927 (2000).
[33] Y. B. Chen, B. J. Lee and Z. M. Zhang, “Infrared radiative properties of submicron metallic slit arrays,” Journal of Heat Transfer 130, p. 082404 (2008).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top