跳到主要內容

臺灣博碩士論文加值系統

(35.172.136.29) 您好!臺灣時間:2021/07/25 02:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃鏡彧
研究生(外文):Jing-Yu Huang
論文名稱:預測引擎汽缸內壁之表面熱行為
論文名稱(外文):Estimation of Surface Thermal Conditions on the Cylinder Wall of Internal Combustion Engine
指導教授:陳寒濤陳寒濤引用關係
指導教授(外文):Han-Taw Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:68
中文關鍵詞:熱傳係數熱通量熱對流引擎熱傳
外文關鍵詞:heat fluxconvectionengine heat transferheat transfer coefficient
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:2
本文反算法提出以有限差分法(Finite difference method)配合最小平方法(Least-squares scheme)並引用於其他文獻中前人利用STAR-CD求得之鰭片上非均勻熱傳係數及光陽公司提供之實驗溫度數據來預測機車引擎汽缸溫度分佈(Temperature distribution)、內壁熱通量(Heat flux)及內部平均熱傳係數(Average heat transfer coefficient)。本研究配合光陽公司所提供之溫度數據將引擎汽缸分割成四個分析區域 - 進氣側區、迎風區、排氣側區及背風區,並假設每個小區域的內壁熱通量為未知的常數。利用求得之內壁熱通量進一步計算出汽缸內部平均熱傳係數並與引擎熱傳經驗公式做比較。結果顯示,量測位置不同及量測誤差對預測值的影響不大。整體而言,背風區之溫度最高,其次是進氣側區及排氣側區,迎風區整體溫度最低。本文再以三維反算法求得汽缸內壁熱通量,並與三維反算法之結果作分析比較。結果顯示,三維反算法與二維反算法所求得之汽缸內壁熱通量一致,汽缸內壁熱傳方向隨z軸方向逐漸下降。
A hybrid numerical algorithm of finite-difference method with the least-squares scheme is proposed to predict the unknown surface heat transfer for motor engines by two-dimensional inverse heat conduction method. In the present study, the engine is divided into four sections – IN, PLUG, EX and CHAIN. The surface heat source in each section is unknown a priori and will be estimated. In addition, the heat transfer coefficient of the fin in each section will also be examined with extra known temperatures. To enhance the accuracy and efficiency of the present method, a good comparison of average heat transfer coefficients inside the cylinder between the present estimations and previous results is demonstrated. The result shows that the average heat transfer coefficients inside the cylinder are correspond to Flow Model developed by Morel. It is worth mentioning that the heat source inside the cylinder and the heat transfer coefficients of the fins can be accurately estimated even for the temperatures with measurement errors. In general, temperatures are the highest in CHAIN section, the second in IN and EX section. Temperatures in PLUG section are the lowest. The three-dimensional model is proposed to compare with the result estimated by two-dimensional model. The result shows the consistency between the two models and that the heat flux on the cylinder wall will gradually decrease along z direction.
摘 要 ........................................................................................................ I
ABSTRACT .................................................................................................... II
誌 謝 ..................................................................................................... III
表 目 錄 ................................................................................................... VII
圖 目 錄 ..................................................................................................... IX
符 號 說 明 ................................................................................................. XII

第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 3
1-3 研究目的 5
1-4 研究重點與本文架構 6
第二章 機車引擎二維理論分析與數值模擬 9
2-1 簡介 9
2-2 建立數學模式 9
2-2-1 數值方法分析 11
2-2-2 反算法 15
2-3 結果與討論 18
2-3-1 溫度量測誤差對預測內部熱源的影響 19
2-3-2 不同起始猜測值對預測內部熱源的影響 20
2-3-3 不同量測位置對預測內部熱源的影響 20
2-3-4 引擎散熱鰭片上非均勻對流熱傳係數之預測 20
2-4 實例研究 21
2-4-1 商用軟體模擬流程與結果 22
2-4-2 文獻模擬結果分析 23
2-4-3 文獻實驗數據分析 24
2-5 結論 25
第三章 機車引擎三維理論分析與數值模擬 44
3-1 簡介 44
3-2 建立數學模式 44
3-2-1 數值模擬分析 45
3-2-2 反算法 47
3-3 結果與討論 49
3-4 結論 52
第四章 綜合結論與未來展望 62
4-1 二維數值分析結果 62
4-2 三維數值分析結果 62
4-3 綜合討論 63
4-4 未來發展與建議 64
參 考 文 獻 65
自 述 68
[1]G. Woschni, “A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine.” SAE paper 670931, 1967.
[2]T. Morel, C.I. Rackmil, R. Keribar and, M.J. Jennings, “Model for Heat Transfer and Combustion in by Spark-Ignited Engine and Its Comparison with Experiments,” SAE Paper 880198, 1988.
[3]Y. Liu and R.D. Reitz, “Modeling of heat conduction within chamber walls for multidimensional internal combustion engine simulations,” Int. J. Heat Transfer. Vol.41, Nos 6-7,pp.859-869,(1998).
[4]J.H. Grau, J.M. Garcia, J.P. Garcia, A.V. Robles and R.R. Pastor, “Modeling Methodology of a Spark-Ignition Engine and Experimental Validation Part I: Single-Zone Combustion Model,” (2002) SAE Paper, No. 2002-01-2193.
[5]C.W. Lee, C.W. Kim and S.P. Kim, “A steady of heat flux in a constant-volume combustion chamber,” Automobile Engineering , Proc. Instn Mech .Engers Vol.217 Part D (2003).
[6]J. Xin, S. Shih, E. Itano and Y. Maeda, “Integration of 3d Combustion Simulations and Conjugate Heat Transfer Analysis to Quantitatively Evaluate Component Temperatures,” SAE Paper 2003-01-3128, 2003.
[7]H.T. Chen and S.M. Chang, “Application of the hybrid method to inverse heat conduction problems,” Int. J. Heat Mass Transfer, Vol. 33, pp. 621-628, 1990.
[8]H.T. Chen, S.Y. Lin, L.C. Fang, “Estimation of surface temperature in two-dimensional inverse heat conduction problems,” Int. J. Heat Mass Transfer, Vol. 44, pp. 1455-1463, 2001.
[9]H.T. Chen, S.Y. Lin and L.C. Fang, “Estimation of two-sided boundary conditions for two-dimensional inverse heat conduction problems,” Int. J. Heat Mass Transfer, Vol. 45, pp. 15-23, 2002.
[10]H.T. Chen and X.Y. Wu, “Application of the hybrid method to the estimation of surface conductions from experimental data, in: Trends in Heat, Mass and Momentum Transfer,” India, 2003, submitted for publication.
[11]H.T. Chen and X.Y. Wu, Y.S. Hsiao, “Estimation of surface condition from the theory of dynamic thermal stresses,” Int. J. Thermal Sciences, Vol. 43, pp. 95-104, 2004.
[12]H.T. Chen and J.C. Chou, “Investigation of natural-convection heat transfer coefficient form the vertical fin of finned-tube heat exchangers,” Int. J. Heat Mass Transfer 49 (2006) 3034-3044.
[13]H.T. Chen and J.C. Chou, “Estimation of heat transfer coefficient on the vertical plate fin of finned-tube heat exchangers for various air speeds and fin spacings,” Int. J. Heat Mass Transfer 50 (2007) 45-57.
[14]Chen, H. T. and Hsu, W. L., Estimation of heat transfer coefficient on the fin of annular-finned tube heat exchangers in natural convection for various fin spacings, Int. J. Heat Mass Transfer 50 (2007) 1750-1761.
[15]H.T. Chen and X.Y. Wu, “Estimation of surface absorptivity in laser surface heating process with experimental data,” J. Phys. D. 39 (2006) 1141-1148.
[16]H.T. Chen and H.C. Lee, “Estimation of spray cooling characteristic on a hot surface using the hybrid inverse scheme,” Int. J. Heat Mass Transfer 50 (2007) 2503-2513.
[17]C.L. Chang and S.F. Chou, “Analysis of Cooling Effect on Irregular Fins of Engines”, International 83 ASME Summer Conference, Modeling and Simulation, 1983.
[18]M.Y. Chang and S.F. Chou, “An Experimental Study on the Cooling Performance of Air-Cooled Engine,” J. Chinese Soc. Mech. Eng. 6, No. 2, 1985.
[19]H.W. Wu and C.P. Chiu, “Study of Finned-Wall Cylinder Temperature in a Two Stroke Gasoline Engine-Comparison of Analytical and Experimental Results,” SAE Paper 871655, 1989.
[20]楊政龍, “測量汽缸壁溫及決定散熱鰭片形狀之暫態熱傳技術發展,” 國立清華大學動力機械工程研究所, 碩士論文, 1998.
[21]簡彰信, “液晶熱像法量測引擎散熱鰭片之熱傳係數研究,” 國立清華大學動力機械工程研究所, 碩士論文, 1999.
[22]曾建國, “引擎散熱鰭片之熱傳數值分析,” 國立清華大學動力機械工程研究所, 碩士論文, 1999.
[23]張錦裕、陳寒濤、吳明勳,“引擎缸內熱源分佈及燃燒研究分析,”光陽工業股份有限公司委託研究計畫報告, 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top