# 臺灣博碩士論文加值系統

(35.172.136.29) 您好！臺灣時間：2021/07/25 02:43

:::

### 詳目顯示

:

• 被引用:0
• 點閱:145
• 評分:
• 下載:24
• 書目收藏:2
 本文反算法提出以有限差分法(Finite difference method)配合最小平方法(Least-squares scheme)並引用於其他文獻中前人利用STAR-CD求得之鰭片上非均勻熱傳係數及光陽公司提供之實驗溫度數據來預測機車引擎汽缸溫度分佈(Temperature distribution)、內壁熱通量(Heat flux)及內部平均熱傳係數(Average heat transfer coefficient)。本研究配合光陽公司所提供之溫度數據將引擎汽缸分割成四個分析區域 - 進氣側區、迎風區、排氣側區及背風區，並假設每個小區域的內壁熱通量為未知的常數。利用求得之內壁熱通量進一步計算出汽缸內部平均熱傳係數並與引擎熱傳經驗公式做比較。結果顯示，量測位置不同及量測誤差對預測值的影響不大。整體而言，背風區之溫度最高，其次是進氣側區及排氣側區，迎風區整體溫度最低。本文再以三維反算法求得汽缸內壁熱通量，並與三維反算法之結果作分析比較。結果顯示，三維反算法與二維反算法所求得之汽缸內壁熱通量一致，汽缸內壁熱傳方向隨z軸方向逐漸下降。
 A hybrid numerical algorithm of finite-difference method with the least-squares scheme is proposed to predict the unknown surface heat transfer for motor engines by two-dimensional inverse heat conduction method. In the present study, the engine is divided into four sections – IN, PLUG, EX and CHAIN. The surface heat source in each section is unknown a priori and will be estimated. In addition, the heat transfer coefficient of the fin in each section will also be examined with extra known temperatures. To enhance the accuracy and efficiency of the present method, a good comparison of average heat transfer coefficients inside the cylinder between the present estimations and previous results is demonstrated. The result shows that the average heat transfer coefficients inside the cylinder are correspond to Flow Model developed by Morel. It is worth mentioning that the heat source inside the cylinder and the heat transfer coefficients of the fins can be accurately estimated even for the temperatures with measurement errors. In general, temperatures are the highest in CHAIN section, the second in IN and EX section. Temperatures in PLUG section are the lowest. The three-dimensional model is proposed to compare with the result estimated by two-dimensional model. The result shows the consistency between the two models and that the heat flux on the cylinder wall will gradually decrease along z direction.
 摘 要 ........................................................................................................ IABSTRACT .................................................................................................... II誌 謝 ..................................................................................................... III表 目 錄 ................................................................................................... VII圖 目 錄 ..................................................................................................... IX符 號 說 明 ................................................................................................. XII第一章 緒論 11-1 研究背景 11-2 文獻回顧 31-3 研究目的 51-4 研究重點與本文架構 6第二章 機車引擎二維理論分析與數值模擬 92-1 簡介 92-2 建立數學模式 92-2-1 數值方法分析 112-2-2 反算法 152-3 結果與討論 182-3-1 溫度量測誤差對預測內部熱源的影響 192-3-2 不同起始猜測值對預測內部熱源的影響 202-3-3 不同量測位置對預測內部熱源的影響 202-3-4 引擎散熱鰭片上非均勻對流熱傳係數之預測 202-4 實例研究 212-4-1 商用軟體模擬流程與結果 222-4-2 文獻模擬結果分析 232-4-3 文獻實驗數據分析 242-5 結論 25第三章 機車引擎三維理論分析與數值模擬 443-1 簡介 443-2 建立數學模式 443-2-1 數值模擬分析 453-2-2 反算法 473-3 結果與討論 493-4 結論 52第四章 綜合結論與未來展望 624-1 二維數值分析結果 624-2 三維數值分析結果 624-3 綜合討論 634-4 未來發展與建議 64參 考 文 獻 65自 述 68
 [1]G. Woschni, “A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine.” SAE paper 670931, 1967.[2]T. Morel, C.I. Rackmil, R. Keribar and, M.J. Jennings, “Model for Heat Transfer and Combustion in by Spark-Ignited Engine and Its Comparison with Experiments,” SAE Paper 880198, 1988.[3]Y. Liu and R.D. Reitz, “Modeling of heat conduction within chamber walls for multidimensional internal combustion engine simulations,” Int. J. Heat Transfer. Vol.41, Nos 6-7,pp.859-869,(1998).[4]J.H. Grau, J.M. Garcia, J.P. Garcia, A.V. Robles and R.R. Pastor, “Modeling Methodology of a Spark-Ignition Engine and Experimental Validation Part I: Single-Zone Combustion Model,” (2002) SAE Paper, No. 2002-01-2193.[5]C.W. Lee, C.W. Kim and S.P. Kim, “A steady of heat flux in a constant-volume combustion chamber,” Automobile Engineering , Proc. Instn Mech .Engers Vol.217 Part D (2003).[6]J. Xin, S. Shih, E. Itano and Y. Maeda, “Integration of 3d Combustion Simulations and Conjugate Heat Transfer Analysis to Quantitatively Evaluate Component Temperatures,” SAE Paper 2003-01-3128, 2003.[7]H.T. Chen and S.M. Chang, “Application of the hybrid method to inverse heat conduction problems,” Int. J. Heat Mass Transfer, Vol. 33, pp. 621-628, 1990.[8]H.T. Chen, S.Y. Lin, L.C. Fang, “Estimation of surface temperature in two-dimensional inverse heat conduction problems,” Int. J. Heat Mass Transfer, Vol. 44, pp. 1455-1463, 2001.[9]H.T. Chen, S.Y. Lin and L.C. Fang, “Estimation of two-sided boundary conditions for two-dimensional inverse heat conduction problems,” Int. J. Heat Mass Transfer, Vol. 45, pp. 15-23, 2002.[10]H.T. Chen and X.Y. Wu, “Application of the hybrid method to the estimation of surface conductions from experimental data, in: Trends in Heat, Mass and Momentum Transfer,” India, 2003, submitted for publication.[11]H.T. Chen and X.Y. Wu, Y.S. Hsiao, “Estimation of surface condition from the theory of dynamic thermal stresses,” Int. J. Thermal Sciences, Vol. 43, pp. 95-104, 2004.[12]H.T. Chen and J.C. Chou, “Investigation of natural-convection heat transfer coefficient form the vertical fin of finned-tube heat exchangers,” Int. J. Heat Mass Transfer 49 (2006) 3034-3044.[13]H.T. Chen and J.C. Chou, “Estimation of heat transfer coefficient on the vertical plate fin of finned-tube heat exchangers for various air speeds and fin spacings,” Int. J. Heat Mass Transfer 50 (2007) 45-57.[14]Chen, H. T. and Hsu, W. L., Estimation of heat transfer coefficient on the fin of annular-finned tube heat exchangers in natural convection for various fin spacings, Int. J. Heat Mass Transfer 50 (2007) 1750-1761.[15]H.T. Chen and X.Y. Wu, “Estimation of surface absorptivity in laser surface heating process with experimental data,” J. Phys. D. 39 (2006) 1141-1148.[16]H.T. Chen and H.C. Lee, “Estimation of spray cooling characteristic on a hot surface using the hybrid inverse scheme,” Int. J. Heat Mass Transfer 50 (2007) 2503-2513.[17]C.L. Chang and S.F. Chou, “Analysis of Cooling Effect on Irregular Fins of Engines”, International 83 ASME Summer Conference, Modeling and Simulation, 1983.[18]M.Y. Chang and S.F. Chou, “An Experimental Study on the Cooling Performance of Air-Cooled Engine,” J. Chinese Soc. Mech. Eng. 6, No. 2, 1985.[19]H.W. Wu and C.P. Chiu, “Study of Finned-Wall Cylinder Temperature in a Two Stroke Gasoline Engine-Comparison of Analytical and Experimental Results,” SAE Paper 871655, 1989.[20]楊政龍, “測量汽缸壁溫及決定散熱鰭片形狀之暫態熱傳技術發展,” 國立清華大學動力機械工程研究所, 碩士論文, 1998.[21]簡彰信, “液晶熱像法量測引擎散熱鰭片之熱傳係數研究,” 國立清華大學動力機械工程研究所, 碩士論文, 1999.[22]曾建國, “引擎散熱鰭片之熱傳數值分析,” 國立清華大學動力機械工程研究所, 碩士論文, 1999.[23]張錦裕、陳寒濤、吳明勳,“引擎缸內熱源分佈及燃燒研究分析,”光陽工業股份有限公司委託研究計畫報告, 2009.
 電子全文
 國圖紙本論文
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 液晶熱像法量測引擎散熱鰭片之熱傳係數研究 2 並列式板鰭管式熱交換器之熱傳特性預測 3 環狀鰭管式熱交換器圓鰭片上自然對流熱傳特性之探討 4 寶特瓶中空式綠屋頂隔熱降溫實驗分析 5 平流鑄造中冷卻輪內冷卻水的沸騰現象 6 根據實驗溫度量測値預測板鰭管式熱交換器之鰭片上的熱傳係數 7 暫態逆向熱傳導理論與實驗分析之研究 8 逆向熱傳——共軛梯度法應用於暫態熱傳系統之分析研究

 無相關期刊

 1 具隨機參數單汽缸引擎動態響應與最佳化設計之研究 2 單汽缸引擎振動特性之研究 3 汽油引擎進氣壓力及點火角度對引擎性能影響之電腦模擬 4 氣冷及水冷式機車引擎之三維熱液動性能分析 5 奈米流體於不同高寬比微流道熱沉孔之熱傳特性數值研究 6 氣渦輪引擎偏離設計點性能衰退趨勢模擬與預測 7 高推力引擎試車間之熱流模擬分析 8 汽車引擎用噴覆成型高矽鋁合金汽缸套之開發 9 農機用柴油引擎氣缸蓋壁面之瞬間熱傳分析 10 SI引擎冷起動富氧燃燒對廢氣排放之影響 11 電動機車之全自動充電系統研製 12 運用引擎模型研究電子汽門引擎之特性 13 內燃機缸內氣流滾轉運動最佳化技術 14 微型渦輪引擎轉子組平衡參數建置與驗證 15 汽油缸內直噴引擎燃燒室流場數值模擬與分析

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室