跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 10:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊閎鈞
研究生(外文):Hung-Chun Yang
論文名稱:錫銀銅3807銲錫在壓縮情形下之黏塑性本構行為
論文名稱(外文):Viscoplastic Constitutive Behavior of Sn3.8Ag0.7Cu Solder under Compression
指導教授:屈子正
指導教授(外文):Tz-Cheng Chiu
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:117
中文關鍵詞:移動硬化背應力黏塑性本構模型無鉛銲錫潛變
外文關鍵詞:lead-free soldercreepviscoplastic constitutive modelkinematic hardeningback stress
相關次數:
  • 被引用被引用:1
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
銲錫在電子產品中主要被用作為連接電訊之接點。因為銲錫接點之失效直接關係到電子產品之使用壽命,所以其可靠度一直是重要的研究課題。過去銲錫接點之材料以錫鉛合金為主,但錫鉛合金含有對環境有害的鉛,近年來國際間紛紛立法限制有鉛銲錫之使用。因此,電子相關產業改採無鉛銲錫取代含鉛銲錫已成為必然之趨勢。就無鉛銲錫接點可靠度而言,無鉛合金受應力作用下之潛變變形造成之材料失效是一亟待解決之問題。本文的重心將專注於模擬錫銀銅3807(Sn3.8Ag0.7Cu)合金之潛變行為。

本論文主要目的是建構一組能更真實表現錫銀銅3807 黏塑性行為之材料本構模型。文中藉由狀態變數方法建構一新型黏塑性本構模型,並選擇背應力為主要的狀態變數,使本構模型可用來表現錫銀銅3807 之移動硬化行為。後再利用錫銀銅3807 在各溫度下之定應變率壓縮實驗數據作曲線擬合求取模型參數。然後採用此新型黏塑性本構模型模擬數種變負載形式外力作用,並與時間硬化潛變模型模擬結果、Anand 模型模擬結果、及銲錫潛變實驗結果進行比對。由比對結果發現:因能表現出錫銀銅3807 之移動硬化行為,本文所建構出之新型黏塑性本模型較其他兩種本構模型更能真實的描述材料之非線性潛變行為。
Solders are used extensively as electrical interconnects in microelectronic systems.In particularly, eutectic or near eutectic tin lead solders have been used widely in the last few decades. Due to the increasingly concerns for toxicity and environmental impact of lead, there is a major push in the electronics industry to shift to lead-free solders. There are, however, many questions regarding the reliability for lead-free solders remain unanswered. One of the key issues for lead-free reliability is the creep response of solder and the corresponding failure mechanism when the interconnect is subjected to either thermal or mechanical loads from manufacturing process or during service life.

This study is focused on modeling the creep behavior of SAC3807 (Sn3.8Ag0.7Cu) solder.In this research a unified viscoplastic constitutive model is developed for describing the inelastic behavior of SAC3807 solder. The viscoplastic constitutive model is based on a state-variable approach. Back stress, which is used for characterizing the kinematic hardening behavior, is selected as the state variable for the constitutive model. The model constants are determined from curve-fitting constant strain rate experimental results. Finally, a numerical model based on the unified viscoplastic constitutive model is applied to simulate several load histories and compared to numerical results obtained form simulations using time-hardening creep constitutive model, numerical results from Anand viscoplastic model and experimental solder creep characterization results. It is observed that, among the three creep constitutive models examined, the new model is the only one that could properly describe the transient creep response when the applied load jumps or reversals.
摘要..................................................... I

英文摘要................................................ II

誌謝.................................................... IV

目錄..................................................... V

表目錄.................................................. IX

圖目錄................................................... X

符號說明.............................................. XIII

第一章緒論............................................... 1

1.1 前言................................................. 1

1.2 文獻回顧............................................. 2

1.2.1 無鉛銲錫之機械性質................................. 2

1.2.2 潛變本構模型....................................... 5

1.2.3 黏塑性本構模型..................................... 9

1.3 研究方法............................................ 14

1.4 本文架構............................................ 15

第二章基礎理論.......................................... 17

2.1 潛變現象............................................ 17

2.2 潛變本構模型........................................ 20

2.2.1 潛變模型組成函數.................................. 20

2.2.2 時間硬化和應變硬化................................ 22

2.2.3 疊加型黏塑性本構模型.............................. 26

2.2.4 潛變流動方程式.................................... 26

2.3 黏塑性本構模型...................................... 30

2.3.1 狀態變數之選擇.................................... 32

2.3.2 狀態變數進化方程式................................ 34

2.3.3 黏塑性流動方程式.................................. 35

第三章無鉛銲錫壓縮實驗.................................. 39

3.1 壓縮實驗器材和準備.................................. 39

3.2 錫銀銅 3807 潛變壓縮實驗............................ 41

3.3 定應變率壓縮實驗.................................... 46

第四章時間硬化潛變模型.................................. 50

4.1 潛變本構模型........................................ 50

4.2 時間硬化潛變模型參數求取............................ 52

4.2.1 決定穩態潛變應變率................................ 53

4.2.2 決定穩態潛變模型之材料參數:C5、C6、C7............ 54

4.2.3 決定暫態潛變模型之材料參數:C1、C2、C3、C4 ....... 55

第五章 Anand 黏塑性本構模型............................. 59

5.1 Anand 黏塑性本構模型................................ 59

5.2 Anand 模型參數求取.................................. 64

5.2.1 模型參數求取步驟.................................. 64

5.2.1.1 決定飽和應力.................................... 64

5.2.1.2 決定穩態參數.................................... 66

5.2.1.3 決定暫態參數.................................... 67

5.2.1.4 決定其餘參數.................................... 69

5.2.2 模型參數討論...................................... 73

第六章修正 Armstrong-Frederick 本構模型................. 75

6.1 修正 Armstrong-Frederick 本構模型................... 75

6.1.1 黏塑性流動方程式.................................. 76

6.1.2 狀態變數進化方程式................................ 77

6.2 修正 Armstrong-Frederick 本構模型參數求取........... 81

6.2.1 求取飽和應力...................................... 81

6.2.2 求取模型穩態參數.................................. 81

6.2.3 求取模型暫態參數.................................. 83

第七章結果與結論........................................ 87

7.1 模擬與實驗比對...................................... 88

7.1.1 單向潛變行為...................................... 88

7.1.2 步階加載行為...................................... 96

7.1.3 循環負載行為...................................... 98

7.1.4 複雜負載行為..................................... 101

第八章結論與未來研究方向............................... 105

8.1 結論............................................... 105

8.2 未來研究方向....................................... 106

參考文獻............................................... 107

附錄 修正 Armstrong-Frederick 本構模型潛變計算程式..... 113

自述................................................... 117
[1] S. Chaparala, J.M. Pitarresi ,M. Meilunas, “Effect of dwell times and ramp rates on the thermal cycling reliability of Pb-free wafer- level chip scale packages Experiments and modeling,”ASME International Mechanical Engineering Congress and Exposition, 2006.

[2] J.-P. Clech, “Review and analysis of lead-free solder material properties,” study sponsored by US National Institute of Standards and Technology (NIST)., 2004.

[3] P. T. Vianco, J. A. Rejent, A. C. Kilgo, “Time-independent mechanical and physical properties of the ternary 95.5Sn-3.9Ag-0.6Cu solder,” Journal of Electronic Materials, Vol. 32, pp. 142-151, 2003.

[4] P. T. Vianco, J. A. Rejent, J. J. Martin, “The compression stress-strain behavior of Sn-Ag-Cu solder” JOM, Vol. 55, pp. 50-55, 2003.

[5] P. T. Vianco, J. A. Rejent, A. C. Kilgo, “.Creep behavior of the ternary 95.5Sn-3.9Ag-0.6Cu solder: Part I: As Cast Condition,” Journal of Electronic Materials, Vol. 33, pp. 1473-1484, 2004.

[6] H. Ma; J. C. Suhling, “A review of mechanical properties of lead-free solders for electronic packaging,” Journal of Materials Science, Vol. 44, pp. 1141-1158,2009

[7] C. E.Pugh, “Constitutive equations for creep analysis of LMFBR components,”ASME national congress on pressure vessels and piping, San Francisco, California, USA, 1975.

[8] S. Murakami, N. Ohno, “Constitutive equation of creep based on the concept of a creep-hardening surface,” Res mechanica letters, Vol. 1, pp. 357-362, 1981.

[9] K.-I. Ohguchi, K. Sasaki, “Elastic-plastic-creep simulation of Pb/Sn solder alloys by separation of plastic and creep,” Transactions of the Japan Society of Mechanical Engineers, Part A, Vol. 68, pp. 1328-1335, 2002.

[10] S. Déplanque, W. Nüchter, B. Wunderle, H. Walter, B. Michel, “valuation of the primary and secondary creep of SnPb solder joint using a modified grooved-lap test specimen,” Proceedings of the 5th International Conference on Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems,EuroSimE 2004, pp. 351-357, 2004.

[11] S. Déplanque, W. Nüchter, M. Spraul, B. Wunderle, R. Dudek, B. Michel,“Relevance of primary creep in thermo-mechanical cycling for life-time prediction in Sn-based solders,” Proceedings of the 6th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems - EuroSimE 2005, Vol. 2005, pp. 71-78, 2005.

[12] J.-P. Clech, “An extension of the omega method to primary and tertiary creep of lead-free solders, Proceedings - Electronic Components and Technology Conference, Vol. 2, pp. 1261-1271, 2005.

[13] D. C. Stouffer, L. T. Dame, “ Inelastic deformation of metals,” John Wiley & Sons, Inc.1996.

[14] S.R. Bodner, Y. Partom, “Large deformation elastic-viscoplastic analysis of a thick-walled spherical shell,” Journal of Applied Mechanics, Transactions ASME, Vol. 39 Ser E, pp. 751-757, 1972.

[15] S.R. Bodner, Y. Partom, “Constitutive equations for elastic-viscoplastic strain-hardening materials,” Journal of Applied Mechanics, Transactions ASME, Vol. 11, pp.384-389, 1975.

[16] J.C. Swearengen, T.C. Lowe, J. Lipkin, “Constitutive equations for rate-depent plasticity,” Ann. Rev. Mater. Sci, Vol. 15, pp249-270, 1985.

[17] V.G. Ramaswamy, D.C. Stouffer, J.H. Laflen, “Unified constitutive model for the inelastic uniaxial response of rene' 80 at temperatures between 538c and 982c,” Journal of Engineering Materials and Technology, Transactions of the ASME, Vol. 112, pp. 280-286, 1990.

[18] V.S. Bhattachar, D.C. Stouffer, “Constitutive equations for the thermomechanical response of rene' 80 Part 1-Development from isothermal Data,” Journal of Engineering Materials and Technology, Transactions of the
ASME, Vol. 115, pp. 351-357, 1993.

[19] L. Anand, “Constitutive equations for the rate-dependent deformation of metals at elevated temperatures,” Proceedings of the Journal of Engineering Materials and Technology, Transactions of the ASME, Vol. 104, pp. 12-17, 1982.

[20] S. B. Brown, K. H. Kim, L. Anand, “Internal variable constitutive model for hot working of metals,” Proceedings of the International journal of plasticity, Vol 5, pp. 95-130, 1989.

[21] Z.N. Cheng, G.Z. Wang, L. Chen, J. Wilde, K. Becker, “Viscoplastic Anand model for solder alloys and its application,” Soldering and Surface Mount Technology, Vol. 12, pp. 31-36, 2000.

[22] G.Z. Wang, Z.N. Cheng, K. Becker, J. Wilde,“Applying Anand model to represent the viscoplastic deformation behavior of solder alloys”Journal of Electronic Packaging, Transactions of the ASME, Vol. 123, pp. 247-253, 2001.

[23] R. Darveaux, K. Banerji, “Constitutive relations for tin-based solder joints,”Proceedings of the IEEE transactions on components, hybrids, and manufacturing technology, Vol. 15, pp. 1013-1024, 1992.

[24] X. Chen, G. Chen, M. Sakane, “Modified anand constitutive model for lead-free solder SN-3.5AG,” Thermomechanical Phenomena in Electronic Systems -Proceedings of the Intersociety Conference, Vol. 2, pp. 447-452, 2004.

[25] B. Rodgers, B. Flood, J. Punch, F. Waldron, “Experimental determination and finite element model validation of the Anand viscoplasticity model constants for SnAgCu,” Proceedings of the International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems-EuroSimE 2005, pp. 490-496, 2005.

[26] M. Pei, J. Qu, “Constitutive modeling of lead-free solders,” Proceedings of the ASME/Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems: Advances in Electronic Packaging, Vol. PART B, pp. 1307-1311, 2005.

[27] D. Bhate, D. Chan, G. Subbarayan, T.C. Chiu, D. Edwards, V. Gupta,“Constitutive behavior of Sn3.8Ag0.7Cu and Sn1.0Ag0.5Cu alloys at creep and low strain rate regimes,” ASME International Mechanical Engineering Congress and Exposition, Proceedings, Vol. 5, pp. 183-196, 2008.

[28] A.F. Fossum, P.T. Vianco, M.K. Neilsen, D.M. Pierce, “A practical viscoplastic damage model for lead-free solder,” Journal of Electronic Packaging,Transactions of the ASME, Vol. 128,pp. 71-81, 2006.

[29] J.T. Boyle and J. Spence, Stress analysis for creep, Butterworths, 1983

[30] P. J. Armstrong, C. O. Frederick, “A mathematical representation of the multiaxial Bauschinger effect,” CEGB Report RD/B/N731, Berkeley Nuclear Laboratories, Berkeley, UK, 1966.

[31] 林俊吉 “無鉛球柵陣列錫球之壓縮潛變模型建立"碩士論文, 國立成功大學, 2009.

[32] ASTM E9-89A “Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature” West Conshohocken, PA, 2009.

[33] MATLAB, R2008a, The MathWorks, Inc., 2008

[34] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, “Lipschitzian optimizationwithout the Lipschitz constant,” J Optim. Theory Appl., Vol. 79, pp.157, 1993

[35] 朱順源 “TAB 銅內引腳接合製程黏塑性力學模擬分析"碩士論文, 國立成功大學, 2002.

[36] ANSYS, ver. 11.0, ANSYS Inc., 2008
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊