跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/27 22:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃文勇
研究生(外文):Wen-yeong Huang
論文名稱:微量Cu添加對Sn-3Ag-1.5Sb無鉛銲料微觀組織與機械性質的研究
論文名稱(外文):Study of Tiny Amounts of Cu Addition on Microstructure and Mechanical Properties of Sn-3Ag-1.5Sb Solder
指導教授:李驊登李驊登引用關係
指導教授(外文):Hwa-Teng Lee
學位類別:博士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:98
中文關鍵詞:Sn-3Ag-1.5Sb-xCu添加Cu界面層熱儲存
外文關鍵詞:Cu additionthermal storageinterfacial layerSn-3Ag-1.5Sb-xCu
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Sn-3.5Ag無鉛銲料被公認為最具開發潛力的無鉛銲料之ㄧ。但若Ag量超過3.5wt%,則高溫儲存後在銲料與純Cu基板界面處的Ag3Sn會粗大化,同時由Cu6Sn5與Cu3Sn所構成在銲料與純Cu基板間的界面層會變厚,同時此界面層的表面也變粗糙,致使銲點強度、抗熱性與抗潛變性降低。為使高溫熱儲存後銲點內的Ag3Sn變小及壓抑界面層的成長故加入第三元素Sb。但Sb因會提高銲料的熔點致使Sn-Ag-Sb銲料的銲接性變差,為降低銲料熔點,而再添加第四元素Cu。本研究中以熱差掃描熱量測定儀(DSC)來量測Sn-3Ag-1.5Sb-xCu (x=0~1.5wt%)的固、液相線溫度變化,並使用OM、SEM及拉伸試驗來探討應變率與熱儲存前後之微結構對銲點結合強度的影響,以定出適合於工業界使用的Cu添加量界限。
研究結果顯示,Sn-3Ag-1.5Sb-xCu銲料的固相線溫度,在添加的0~1.5wt %Cu範圍內約在492~493K,比未添加Cu的Sn-3Ag-1.5Sb(498K)約降5K,顯示添加Cu後降低銲料固相線溫度的效果良好。剛銲接完成之銲料的硬度與強度會隨著所添加Cu數量的增加而增大,然而在150 熱儲存初期(≦200小時),硬度與強度值則反之隨熱儲存時間的增加而降低,但在同一熱儲存時間下,當Cu添加量小於1.0wt%時,硬度與強度值則仍維持隨著添加Cu數量的增加而增大,而此時的1.5wt% Cu銲料因界面層增厚及界面層的表面粗糙度較1.0wt% Cu銲料嚴重,而因應力集中效應導致1.5wt% Cu銲料強度降低。當熱儲存時間超過200小時後,硬度、強度的變化則差別不大。所以Sn-3Ag-1.5Sb-1.0Cu銲點的強度為本研究所用Sn-3Ag-1.5Sb-xCu銲料在同一熱儲存條件下最高者。
水冷銲料的硬度,即使經熱儲存後仍比同時效的空冷佳,此乃因水冷組織比空冷的Ag3Sn、Cu6Sn5與環狀β-Sn基地小,以及界面層較薄、表面較平整所致。經150 熱儲存處理過的拉伸試片,在Cu添加量小於1.0wt%、熱儲存小於600小時及應變率小於1.0s-1時的破壞特徵皆呈韌脆混合模式,但在添加1.5Cu的銲點在200小時熱儲存以後的高應變率下(大於1.0s-1)則為劈裂的破壞模式。添加1.0 wt%Cu的試片,因長時間熱儲存下,界面層厚度與界面層表面粗糙度較1.5 wt%Cu小,故時效後銲點的結合強度較大。
Sn-3.5 wt% Ag lead-free solder is recognized as having an excellent potential for soldering applications. However, when the Ag content in the solder exceeds 3.5 wt%, the Ag3Sn intermetallic compound (IMC) formed within the interface between the solder and a Cu substrate following the thermal storage process become large and plate-like. Furthermore, an interfacial layer containing Cu6Sn5 and Cu3Sn particles is formed at the interface between them. Following prolonged storage, the thickness of the interfacial layer increases and its morphology coarsens, and thus the mechanical properties, thermal resistance, and creep resistance of the solder are severely degraded. The addition of small amounts of Sb to the Sn-Ag solder reduces the Ag3Sn grain size, suppresses the growth of the interfacial layer following high temperature storage. However, Sb addition also increases the melting point of the solder, which may potentially damage the solderability of the Sn-Ag-Sb solder. And the melting point of Sn-Ag-Sb solder can be reduced through the addition of a fourth alloying element of Cu. Accordingly, a Differential Scanning Calorimeter (DSC) was used to detect the change in the solidus for different levels of Cu addition. The influences of strain rate, and different thermal storage times on the microstructure and bonding strength of the Sn-Ag-Sb-Cu solder joints in order to find an optimum Sn-Ag-Sb-Cu solder composition for industrial applications.
The experimental results show that the solidus temperature falls about 492~493K with a range of 0~1.5wt% Cu addition. The solidus temperature falls about 5K below that of the Sn-3Ag-1.5Sb solder. Therefore, the effect of Cu addition to the Sn-3Ag-1.5Sb on the solidus temperature was obvious.
The hardness and strength of the as-soldered studied solder increase with increasing Cu addition. During the early stages of thermal storage, the hardness and strength decrease with aging period. For any given storage time, the hardness and strength increase with increasing Cu addition within 1.0wt%Cu addition. The addition of 1.5 wt% Cu to the solder yields a thicker, rougher interfacial layer than 1.0 wt% Cu. The resulting stress concentrations degrade the bonding strength of the Sn-3Ag-1.5Sb-1.5Cu/Cu sample. However, after 200hrs thermal storage, little change in the hardness and strength takes place. And thus for any given aging condition, the Sn-3Ag-1.5Sb-1.0Cu solder has the highest bonding strength of the thermal storage samples.
The same solder with water cooling seems to have the better properties than with air cooling. Following the soldering, the Ag3Sn, Cu6Sn5 particles, and the eutectic area around the β-Sn primary grain was smaller and the surface of the interfacial layer was thinner and more planar with a faster cooling rate than with a lower cooling rate. Therefore, the faster cooling rate can increase the strength of solder joints.
SEM analyses of the aged specimens at 150 following tensile testing have shown that the Sn-3Ag-1.5Sb-0.5Cu and Sn-3Ag-1.5Sb-1.0Cu joints fail as a result of a mixed brittle and ductile failure mode. The thermal aged Sn-3Ag-1.5Sb-1.5Cu joint stressing at a higher strain rate (over 1s-1) fails in a cleavage fracture mode. For prolonged aging condition, the Sn-3Ag-1.5Sb-1.0Cu solder has the highest adhesive strength of the various samples, and the addition of 1.5 wt% Cu to the solder yields a thicker, rougher interfacial layer than 1.0 wt% Cu.
總 目 錄

口試合格證明 I
中文摘要 II
英文摘要 IV
誌謝 VII
總目錄 VIII
表目錄 X
圖目錄 XI
一、前言 1
二、文獻回顧 9
2-1無鉛錫銲合金的發展 9
2-2二元無鉛銲錫合金 10
2-3三元無鉛銲錫合金 18
2-4冷卻速率的影響 25
2-5應變率的影響 26
2-6銲點機械強度測試 28
三、實驗步驟與方法 33
3-1實驗規劃 33
3-2試件製備 35
3-3實驗內容與相關儀器 36
四、結果與討論 42
4-1 Sn-Ag-Sb-xCu無鉛銲料性質分析 42
4-1-1添加Cu對銲料熔點的影響 42
4-1-2添加Cu對微組織的影響 42
4-1-3添加Cu對微硬度的影響 47
4-1-4冷卻速度對微組織的影響 47
4-1-5冷卻速度對微硬度的影響 49
4-2 Sn-Ag-Sb-xCu銲點微結構與性質分析 50
4-3銅的添加與應變率對Sn-Ag-Sb-Cu銲點附合強度的影響 68
4-3-1添加Cu及熱儲存時間對銲點強度的影響 68
4-3-2應變率對銲點強度的影響 69
4-4拉伸試件的銲點破斷形貌 70
五、結論與建議 84
5-1 結論. ....84
5-2 建議. ......86
參考文獻 87
個人簡歷 98

表 目 錄

表 2-1 現有的無鉛銲料組成 12
表 2-2 NCMS所選出7種最具潛力之無鉛銲料 19
表 2-3 Sn-Ag、Sn-Sb與Ag-Sb二元合金系統之IMC相一覽表 28
表 3-1 Sn-3.5Ag銲料成份(wt%) 39
表 3-2 各合金成份物理性質 39
表 3-3 銲料成分表,單位:wt% 39
表 3-4 助銲劑成份表 40
表 4-1 銲料固相線、液相線溫度及固液相區間值 44
表 4-2 不同銲料與150℃,不同熱儲存時間下的m值 76

圖 目 錄

圖 2-1 無鉛銲料之熔點分佈 11
圖 2-2 Sn-Ag 二元相圖 14
圖 2-3 Sn-Cu 二元相圖 15
圖 2-4 Sn-Sb二元合金相圖 20
圖 2-5 Ag-Sb 二元相圖 21
圖 2-6 Sn-Ag-Sb三元合金相圖 29
圖 2-7 Sn-Ag-Cu三元合金相圖 30
圖 2-8 Sn-Sb-Cu三元合金相圖 31
圖 2-9 可靠度測試形式: (a)塊材拉伸試件, (b)塊材剪切試件, (c)熱浸法的簡易剪切試件,(d)熱浸法的簡易拉伸試件,(e)實際表面封裝銲點試件……………………………32
圖 3-1 實驗流程圖 34
圖 3-2 拉伸試件 40
圖 3-3 典型的DSC曲線……………… .40
圖 4-1 Sn-Ag-Sb-xCu銲料的DSC曲線: (a)0Cu, (b)0.5Cu, (c)1.0Cu, (d)1.5Cu 43
圖 4-2 Sn-3Ag-1.5Sb-xCu(x=0.5~1.5wt%) XRD分析 53
圖 4-3 PCPDFwin-powder diffraction電子資料庫XRD繞射圖: (a)Sn繞射圖, (b)Ag3Sn, (c)Cu6Sn5繞射圖, (d)Cu3Sn繞射圖, (e)SnSb繞射圖, (f)Ag3Sb繞射圖 54
圖 4-4 Sn-Ag-Sb-xCu銲料在不同銅成分下的微觀組織: (a)0Cu, (b) 0.5Cu, (c) 1.0Cu,與(d) 1.5Cu 55
圖 4-5 Sn-Ag-Sb-xCu銲料在150 , 600小時時效後不同銅成分下的微組織: (a) 0Cu, (b)0.5Cu, (c)1.0Cu, (d)1.5Cu 56
圖 4-6 Cu添加量及時效時間對Sn-Ag-Sb-Cu銲料硬度的影響 57
圖 4-7 As-soldered後不同冷速的Sn-Ag-Sb-xCu(x=0.5~1.5) 銲料的OM金相圖 58
圖 4-8 Sn-3Ag-1.5Sb-1.5Cu銲料經銲後水冷的SEM金相圖: (a)SEM圖, (b)X-ray繞射圖, (c) EDS的成份分析 59
圖 4-9 As-soldered後不同冷速的Sn-Ag-Sb-xCu(x=0.5~1.5) 銲料經150 ,600小時時效後的OM金相圖 60
圖 4-10 Sn-Ag-Sb-xCu(x=0~1.5)銲料的硬度與冷速、Cu成份及時效時間的關係 61
圖 4-11 Sn-Ag-Sb-xCu銲點在銲接空冷後不同銅成分下的微觀組織: (a) 0Cu, (b) 0.5Cu, (c) 1.0Cu, 與(d) 1.5Cu 64
圖 4-12 Sn-Ag-Sb-xCu銲點在銲後經150 , 600小時熱儲存,不同銅成分下的微觀組織: (a) 0Cu, (b) 0.5Cu, (c) 1.0Cu, 與(d) 1.5Cu 65
圖 4-13 Sn-3Ag-1.5Sb/純Cu界面於150 , 600小時時效後的微觀組織: (a) BEI 圖, (b)深腐蝕後的 BEI圖, 與(c)EDS 的成分分析 66
圖 4-14 Sn-3Ag-1.5Sb-1.5Cu銲料/純Cu 基板在150oC, 600小時時效後的界面形貌及EDS 的成分分析…………67
圖 4-15 Sn-Ag-Sb-xCu(x=0~1.5)銲料/純Cu基板界面IMC層厚度隨銅含量與時效時間變化的情況 71
圖 4-16 As-soldered後不同冷速的Sn-Ag-Sb-xCu(x=0.5~1.5) 銲料/純Cu基板界面的OM金相圖 72
圖 4-17 不同銅加入量與不同冷速的Sn-Ag-Sb-xCu銲料與純Cu基板間的界面經150 ,600小時時效後的OM金相圖 73
圖 4-18 Sn-Ag-Sb-xCu(x=0~1.5)銲料與純Cu基板間的界面層厚度與銅含量、冷速及時效週期的關係 74
圖 4-19 應變率0.1s-1下Sn-Ag-Sb-xCu(x=0~1.5)銲點的強度與熱儲存時間的關係圖 74
圖 4-20 Sn-3Ag-1.5Sb-xCu與純Cu的銲點在150 不同熱儲存時間的結合強度隨應變率變化的情況: (a) 0 小時, (b) 25小時, (c) 200小時,與(d) 600小時 75
圖 4-21 銲接後Sn-3Ag-1.5Sb-1.0Cu與純Cu銲點試片在0.1 s-1拉伸應變率下的SEM破裂圖: (a)巨觀橫剖面圖, (b)微觀橫剖面圖, (c)破斷口上視圖 79
圖 4-22 Sn-3Ag-1.5Sb-0.5Cu與純Cu銲點試片在150 ,200小時熱儲存後, 0.1 s-1拉伸應變率下的SEM破裂圖: (a)巨觀橫剖面圖,(b)微觀橫剖面圖, (c)破斷口上視圖 80
圖 4-23 Sn-3Ag-1.5Sb-1.0Cu與純Cu銲點試片在150 ,200小時熱儲存後, 不同拉伸應變率下的SEM破裂圖: (a) 0.001 s-1, (b) 0.01 s-1, (c) 0.1 s-1, 與(d) 1 s-1. 81
圖 4-24 Sn-3Ag-1.5Sb-1.5Cu純Cu銲點試片在150 ,200小時熱儲存後, 1 s-1拉伸應變率下的SEM破裂圖: (a)橫剖面圖, (b) IMC層上視圖 82
圖 4-25 為Sn-3Ag-1.5Sb-1.0Cu與純Cu銲點及Sn-3Ag-1.5Sb-1.5Cu與純Cu銲點在150 , 600小時時效後不同應變率下的SEM破斷圖: (a) Sn-3Ag-1.5Sb-1.0Cu 銲點, 1s-1 應變率, (b) Sn-3Ag-1.5Sb-1.5Cu銲點, 0.01s-1應變率, (c) Sn-3Ag-1.5Sb-1.5Cu 銲點, 0.1s-1應變率, 與(d) Sn-3Ag-1.5Sb-1.5Cu 銲點, 1s-1應變率.............. ........ ..83
參考文獻
1.K. D. Kim and D. D. L. Chung, "Morphological stability of solder reaction products in flip chip technology", Journal of Electronic Materials, 31, 2002, pp.933-939.
2.D. G. Kim and S. B. Jung, "Effect of aging conditions on interfacial reaction and mechanical joint strength between Sn-3.0Ag-0.5Cu solder and Ni-P UBM", Journal of Alloys and Compounds, 286, 2005, pp. 151-156.
3.P. Sun, C. Andersson, X. Wei, Z. Cheng, D. Shangguan and J. Liu, "High temperature aging study of intermetallic compound formation of Sn-3.5Ag and Sn-4.0Ag-0.5Cu solders on electroless Ni(P) metallization", Journal of Alloys and Compounds, 425, 2006, pp. 191-199.
4.D. G. Kim, J. W. Kim and S. B. Jung, "Effect of aging conditions on interfacial reaction and mechanical joint strength between Sn-3.0Ag-0.5Cu solder and Ni-P UBM", Materials Science and Engineering (B), 121, 2005, pp. 204-210.
5.M. Cole and T. Caulfield, "Constant strain rate tensile properties of various lead based solder alloys at 0, 50, and 100 ", Scripta Metallurgica et Meterialia, 27, 1992, pp. 903-908.
6.H. L. Reynolds, J. W. Morris Jr., "The role of Cu-Sn intermetallics in wettability degradation", Journal of Electronic Materials, 24, 1995, pp. 1429-1434.
7.D. R. Frear and P. T. Vianco, "Intermetallic growth and mechanical behavior of low and high melting temperature solder alloys", Metallurgical and Materials Transaction (A), 25, 1994, pp. 1509-1523.
8.P. T. Vianco, P. F. Hlava and A. C. Kilgo, "Intermetallic compound layer formation between Copper and hot-dipped 100 In, 50In-50Sn, 100Sn, and 63Sn-37Pb coatings", Journal of Electronic Materials, 23, 1994, pp. 583-594.
9.張淑如,"鉛對人體的為害",勞工安全衛生簡訊,第12期,勞工安全衛生研究所, 84年8月,pp. 17-18.
10.R. J. Klein-Wassink, Soldering in Electronics, Electrochemical Publications, Ayr, Scotland, 1989.
11.鍾崇焱、柯捷男, "可怕的鉛污染",科學發展,357期,2002年9月, pp. 52-55.
12.M. Abtew and G. Selvaduray, "Lead-free solder in microelectronics", Materials Science and Engineering (R), 27, 2000, pp. 95-141.
13.Sony, "Semiconductor poducts lead-free package", Sony Papers, 2000.
14.L. J. Turbini, G. C. Munie, D. Bernier, J. Gamalski and D. W. Bergman, "Examining the environmental impact of lead-free soldering alternatives", IEEE Transactions on Electronics Packaging Manufacturing, 24, 2001, pp. 4-9.
15.A. Syed, T. S. Kim, Y. M. Cho, C. W. Kim and M. Yoo, "Alloying effect of Ni, Co, and Sb in SAC solder for improved drop performance of chip scale packages with Cu OSP pad finish", IEEE Electronics Packaging Technology Conference, 2006, pp. 404-411.
16.K. S. Kim, S. H. Huh and K. Suganuma, "Effects of intermetallic compounds on properties of Sn-Ag-Cu lead-free soldered joints", Journal of Alloys and Compounds, 352, 2003, pp. 226-236.
17.S. Choi, T. R. Bieler, J. P. Lucas and et al., "Characterization of the growth of intermetallic interfacial layers of Sn-Ag and Sn-Pb eutectic solders and their composite solders on Cu substrate during isothermal long-term aging", Journal of Electronic Materials, 28, 1999, pp. 1205-1209.
18.編輯室, "無鉛焊接的開發動向", 電子與材料, 第一期, 1999, pp. 78-84.
19.V. I. Igoshev, J. I. Kleiman, D. Shanggum, S. Wong and U. Michon, "Fracture of Sn-3.5%Ag solder alloy under creep", Journal of Electronic Materials, 29, 2000, pp. 1356-1361.
20.K. Suganuma, S.H. Huh, Keunsoo Kim, Hirofumi Nakase, Yoshikazu Nakamura, "Effect of Ag content on properties of Sn-Ag binary alloy solder," Materials Transactions, 42, 2001, pp.286-291.
21.W. Yang, R.W. Messler, JR., "Microstructure evolution of eutectic Sn-Ag solder joints", Journal of Electronic Materials, 23, 1994, pp. 765-772.
22.陳銀發, "添加Cu對Sn-Ag-Sb無鉛銲料銲點微結構與剪切強度之影響", 國立成功大學機械研究所, 碩士論文, 2005. 7.
23.陳明宏, "添加Sb對Sn-Ag無鉛銲料銲點冶金性質與機械性質之研究", 國立成功大學機械研究所, 博士論文, 2003. 7.
24.D. R. Flanders, E. G. Jacobs, and R. F. Pinizzotto, "Activation energies of intermetallic growth of Sn-Ag eutectic solder on copper substrates", Journal of Electronic Materials, 26, 1997, pp. 883-886.
25.H. K. Kim and K. N. Tu, "Kinetic analysis of the soldering reaction between eutectic SnPb alloy and Cu accompanied by ripening", Physical Review (B), 53, 1996, pp. 16027-16034.
26.K. N. Tu, "Cu/Sn interfacial reactions: thin-film case versus bulk case", Materials Chemistry and Physics, 46, 1996, pp. 217-223.
27.K. N. Tu, F. Ku, T. Y. Lee, "Morphological stability of solder reaction products in flip chip technology", Journal of Electronic Materials, 30, 2001, pp. 1129-1132.
28.H. T. Lee, T. L. Liao and M. H. Chen, "Study on microstructure and shear strength of Sn-Ag-Sb solder joints", IEEE, The 3rd International Symposium on Electronics and Packaging, 2001, pp. 315-322.
29.H. T. Lee, M. H. Chen, H. M. Jao and T. L. Liao, "Influence of interfacial intermetallic compound on fracture behavior of solder joints", Materials Science and Engineering (A), 358, 2003, pp. 134-141.
30.S. K. Kang, W. K. Choi, D. Y. Shih, D. W. Henderson, T. Gosselin, A. Sarkhel, C. Goldsmith, and K. J. Puttlitz, "Ag3Sn plate formation in the solidification of near-ternary eutectic Sn-Ag-Cu", JOM, The Member Journal of the Minerals, Metals & Materials Society, 55, 6, 2003, pp. 61-65.
31.R.K. Mahidhara, S.M.L. Sastry, Iwona Turlik, K. L. Murty, "Deformation and fracture behavior of Sn-5Sb solder", Scripta Metallurgica et Meterialia, 31, 1994, pp. 1145-1150.
32.廖天龍, "添加Sb 對Sn-Ag 無鉛銲料之銲點剪切強度影響," 國立成功大學機械研究所, 碩士論文, 2001. 6.
33.楊傳鏈, "添加Sb 對Sn-Ag 無鉛銲料銲點微結構與剪切強度之影響," 國立成功大學機械研究所, 碩士論文, 2002. 6.
34.胡順源, "Sn-Ag-xSb無鉛錫銲接點與Au/Ni-P/Cu金屬層之界面微結構與剪切強度研究", 國立成功大學機械研究所, 碩士論文, 2003. 6.
35.李政賢, "Sn-Ag-xSb無鉛錫銲接點微結構與低週疲勞之研究", 國立成功大學機械研究所, 碩士論文, 2003. 6.
36.饒慧美, "添加Sb、Cu對無鉛銲料Sn-Ag銲點之機械性質及微結構研究", 國立成功大學機械研究所, 碩士論文, 2000. 6.
37.M. McCormack and S. Jin, "Improved mechanical properties in new, Pb-free solder alloys", Journal of Electronic Materials, 23, 1994, pp. 715-720.
38.L. Xiao, J. Liu, Z. Lai, L. Ye, and A. Tholen, "Characterization of mechanical properties of bulk lead-free solders", International Symposium on Advanced Packaging Materials, 2000, pp. 145-151.
39.C. E. Ho, R. Y. Tsai, Y. L. Lin and C. R. Kao, "Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni", Journal of Electronic Materials, 31, 2002, pp. 584-590.
40.Y. Kariya and M. Otsuka, "Effects of bismuth on the isothermal fatigue properties of Sn-3.5mass%Ag solder alloy", Journal of Electronic Materials, 27, 1998, pp. 866-870.
41.Y. Kariya and M. Otsuka, "Mechanical fatigue characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn and In) solder alloys", Journal of Electronic Materials, 27, 1998, pp. 1229-1235.
42.C. Y. Liu, Y. R. Chen, W. L. Li, M. H. Hon and M. C. Wang, "Effect of thermal treatment on the intermetallic compounds formed at Sn-9Zn-1.5Ag-xBi(x=0 and 1) lead- free solder/ Cu interface", Materials Transactions, 48, 2007, pp. 2133-2138.
43.J. E. Lee, K. S. Kim, K. Suganuma, M. Inoue and G. Izuta, "Thermal properties and phase stability of Zn-Sn and Zn-In alloys as high temperature lead-free solder", Materials Transactions, 48, 2007, pp. 584-593.
44.楊省樞, "覆晶技術", 工業材料, 第127期, 1997, pp.90-96.
45.Y. McCormack, H. S. Chen, G. W. Kammlott and S. Jin, "Significantly improved mechanical properties of Bi-Sn solder alloys by Ag-doping", Journal of Electronic Materials, 26, 1997, pp. 954-958.
46.S. K. Kang, D. Y. Shih, D. Leonard, D. W. Henderson, T. Gosselin, S. Cho, J. Yu, and W. K. Choi, "Controlling Ag3Sn plate formation in near-ternary-eutectic Sn-Ag-Cu solder by minor Zn alloying", JOM, The Member Journal of the Minerals, Metals & Materials Society, 56, 6, 2004, pp. 34-38.
47.K. Suganuma, "Interface phenomena in lead-free soldering", Proceedings Eco Design ’99, First International Symposium on 1999, pp. 620-625.
48.W. Yang, L. E. Felton, R. W. Messler, JR., "The effect of soldering process variable on the microstructure and mechanical properties on eutectic Sn-Ag/Cu solder joints", Journal of Electronic Materials, 24, 1995, pp. 1465-1472.
49.K. Zeng and K, N, Tu, "Six cases of reliability study of Pb-free solder joints in electronic packaging technology", Materials Science and Engineering (R), 38, 2002, pp. 55-105.
50.A. Z. Miric and A. Grusd, "Lead-free alloys", Soldering & Surface Mount Technology, 1998, pp. 19-25.
51.J. Sigelko, S. Choi, K. N. Subramanian and J.P. Lucas, "The effect of small additions of copper on the aging kinetics of the intermetallic layer and intermetallic particles of eutectic tin-silver solder joints", Journal of Electronic Materials, 29, 2000, pp. 1307–1311.
52.S. K. Seo, S. K. Kang, D. Y. Shin and H. M. Lee, "An investigation of microstructure and microhardness of Sn-Cu and Sn-Ag solders as functions of alloys composition and cooling rate", Journal of Electronic Materials, 38, 2009, pp. 257-265.
53.Metals Handbook, 10th Edition, Vol. 3 Alloy phase diagrams, American Society for Metals, Metals Park, 1992.
54.B. P. Richard, C. L. Levoguer and C. P. Hunt, "An analysis of the current status of lead-free soldering", DTI Report, 1999.
55.W. T. Chen, R. Y. Tsai, Y. L. Lin, "Effect of copper concentration on the solid-state aging reactions between tin-copper lead-free solders and nickel", Journal of Surface Mounting Technology, 15, 2002, pp. 40-44.
56.Y. Miyazawa and T. Ariga, "Influences of aging treatment on microstructure and hardness of Sn-(Ag, Bi, Zn) eutectic solder alloys", Materials Transactions, 42, 2001, pp. 776-782.
57.P. T. Vianco, "Solder alloys : a look at the past, present and future", Welding Journal, 1997, pp. 45-49.
58.梁元彰, "無鉛焊錫合金概論", 電腦與通訊期刊, 90, 2000, pp. 45-49.
59.W. Allen and J. Perepezko, "Constitution of the tin-antimony system", Scripta Metallurgica et Meterialia, 24, 1990, pp. 2215-2220.
60.R. J. Maccabe and M. E. Fine, "Creep of tin, Sb-solution- strengthened tin, and SbSn-precipitate-strengthened tin", Metallurgical and Materials Transaction (A) 33, 2002, pp. 1531-1539.
61.ESPEC Technology Report, 13, 2002, pp. 1-8.
62.B. Predel and W. Schwermann, "Constitution and thermodynamics of the antimony-tin system", Journal of the Institute of Metals, 99, 1971, pp. 169-173.
63.V. Vassiliev, M. Lelaurain, J. Hertz, "New proposal for the binary (Sn,Sb) phase diagram and its thermodynamic properties based on a new e.m.f. study", Journal of Alloys and Compounds, 247, 1997, pp. 223-233.
64.G. Petzow and G. Effenberg edit, "Ternary alloys", Vol. 2, VCH Verlagsgesellschaft, 1988.
65.許媛婷, "利用Sn/Sb及Sn3.5Ag/Sb擴散實驗研究Sb在無鉛銲料系Sn-Ag系統中之行為", 國立成功大學機械系專題研究, 2004. 7.
66.C. F. Chen, S. K. Lahiri and P. Yuan, "An intermetallic study joints with Sn-Ag-Cu lead-free solder", IEEE, Electronics Packaging Technology Conference, 2000, pp. 72-80.
67.I. E. Anderson, J. C. Foley, B. A. Cook, J. Harringa, R. L. Terpstra and O. Unal, "Alloying effects in near-eutectic Sn-Ag-Cu solder alloys for improved microstructural stability", Journal of Electronic Materials, 30, 2001, pp. 1050-1059.
68.M. McCormack, S. Jin, G. W. Kammlott and H. S. Chin, "New Pb-free solder alloy with superior mechanical properties", Applied Physics Letter, 63, 1993, pp. 15-17.
69.J. Shen, Y. C. Liu and H. X. Gao, "Formation of bulk Cu6Sn5 intermetallic compounds in Sn-Cu lead-free solders during solidification", Journal of Materials Science, 42, 2007, pp. 5375-5380.
70.陳明宏, 李驊登, 李洋憲, 陳柏瑋, "冷卻率對Sn-3.5Ag銲料微結構與機械性質的影響, " 中國機械工程學會第二十屆全國學術研討會論文集, 台灣 國立台灣大學, 2003. 11.
71.K. S. Kim, S. H. Huh, and K. Suganuma, "Effects of cooling speed on microstructure and tensile properties of Sn-Ag-Cu alloys", Materials Science and Engineering (A), 333, 2002, pp.106-114.
72.J. J. Sundelin, S. T. Nurmi, T. K. Lepisto and E. O. Ristolainen, "Mechanical and microstructural properties of Sn-Ag-Cu solder joints ", Materials Science and Engineering (A), 420, 2006, pp. 55-62.
73.J. Sigelko, S. Choi, K.N. Subramanian, "Effect of cooling rate on microstructure and mechanical properties of eutectic Sn-Ag solder joints with and without intentionally incorporated Cu6Sn5 reinforcements", Journal of Electronic Materials, 28, 1999, pp. 1184-1188.
74.Y. S. Kim, K.S. Kim, "Effect of composition and cooling rate on microstructure and tensile properties of Sn–Zn–Bi alloys", Journal of Alloys and compounds, 352, 2003, pp. 237-245.
75.I. Shohji, T. Yoshida, T. Takahashi and S. Hioki, "Tensile properties of Sn-Ag based lead-free solders and strain rate sensitivity", Materials Science and Engineering A, 366, 2004, pp. 50-55.
76.F. Lang, H. Tanaka, O. Munegata, T. Taguchi and T. Narita, "The effect of strain rate and temperature on the tensile properties of Sn-3.5Ag solder", Materials Characterization, 54, 2005, pp. 223-229.
77.S. Kikuchi, M. Nishimura, K. Suetsugu, T. Ikari and K. Matsushige, "Strength of bonding interface in lead-free Sn alloy solders", Materials Science and Engineering, A319-321, 2001, pp. 475-479.
78.黃淑禛, 李巡天, 陳凱琪, "新世代半導體封裝材料技術與發展趨勢," 工業材料雜誌, 170期, 90年2月, pp. 86-99.
79.王照中, "電子產品之溫度循環試驗規範簡介," 電子檢測與品管, 42, 2000, pp. 44-48.
80.X.Q. Shi, H.L.J. Pang, W. Zhou and Z.P. Wang, "Low cycle fatigue analysis of temperature and frequency effects in eutectic solder alloy", International Journal of Fatigue, 22, 2000, pp. 217-228.
81.J. H. L. Pang, K. H. Tan, Xunqing Shi and Z. P. Wang, "Thermal cycling aging effects on microstructural and mechanical properties of a single PBGA solder joint specimen", IEEE Transactions on Components and Packaging Technologies, 24, 2001, pp. 10-15.
82.D. J. Xie, Yan C. Chan, J. K. L. Lai and I. K. Hui, "Fatigue life estimation of surface mount solder joints", IEEE Transactions on Component, Packaging, and Manufacturing Technology-Part B, 19, 1996, pp. 669-678.
83.J. Lau, T. Marcotte, J. Severine, A. Lee, S. Erasmus, T. Baker, J. Moldaschel, M. Sporer and G. Burward-Hoy, "Solder joint reliability of surface mount connectors", Journal of Electronic Packaging, 115, 1993, pp. 180-188.
84.Fay Hua, C.Michale Garner, H.G. Song and J.W. Morris, "Creep of Pb-free solders", Intel Papers, 2001.
85.ASTM F1269-89, "Test methods for destructive shear testing of ball bonds", American Society for testing of Materials, 1995.
86.M.O. Alam, Y.C. Chan and K.C. Hung, "Reliability study of the electroless Ni-P layer against solder alloy", Microelectronics Reliability, 2002, pp. 1065-1073.
87.C. E. Ho, R. Y. Tsai, Y. L. Lin and C. R. Kao, "Effect of Cu concentration on the reactions between Sn-Ag-Cu solders and Ni", Journal of Electronic Materials, 31, 2002, pp. 584-590.
88.B. L. Chen and G. Y. Li, "An investigation of effects of Sb on the intermetallic formation in Sn-3.5Ag-0.7Cu solder joints", IEEE Transactions on Components and Packaging Technologies, 28, 2005, pp. 534-541.
89.S. Chada, W. Laub, R. A. Fournelle, D. Shangguan, "An improved numerical method for predicting intermetallic layer thickness developed during the formation of solder joints on Cu substrates", Journal of Electronic Materials, 28, 1999, pp. 1194-1202.
90.K. Zeng, V. Vuorinen, and J. K. Kivilahti, "Interfacial reactions between lead-free SnAgCu solder and Ni(P) surface finish on printed circuit boards", IEEE Transactions on Electronics Packaging Manufacturing, 25, 2002, pp. 162-167.
91.H.T. Lee, and M.H. Chen, "Influence of intermetallic compounds on the adhesive strength of solder joints", Materials Science and Engineering (A), 333, 2002, pp. 24-34.
92.C. K. Shin, and J. Y. Huh, "Effect of Cu-containing solders on the critical IMC thickness for the shear strength of BGA solder joints", IEEE, The 3rd,International Conference on Electronic Packaging Technology, 2000, pp. 406-411.
93.D.R. Frear, J.W.Jang, JK. Lin and C. Zhang, "Pb-free solders for flip-chip interconnects", JOM, The Member Journal of the Minerals, Metals & Materials Society, 53, 2001, pp. 28-32.
94.R.A.Gagliano and M.E. Fine, "Growth of eta phase scallops and whiskers in liquid tin-solid copper reaction couples", JOM, The Member Journal of the Minerals, Metals & Materials Society, 53, 2001, pp. 33-38.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top