跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/03 20:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳一裕
研究生(外文):Yi-Yu Chen
論文名稱:預測於噴霧冷卻環境下之環狀鰭管式熱交換器之鰭片上的熱傳特性
論文名稱(外文):Estimation of Heat Transfer Characteristics on the Fin of Annular-Finned Tube Heat Exchangers in Spray Cooling
指導教授:陳寒濤陳寒濤引用關係邱政勳邱政勳引用關係
指導教授(外文):Han-Taw ChenJenq-Shing Chiou
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:80
中文關鍵詞:總熱傳係數熱交換器鰭片效率噴霧量環狀圓鰭片
外文關鍵詞:overall heat transfer coefficientquantities of sprayheat exchangersannular circular finfin efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
本文乃以有限差分法(Finite difference method)配合最小平方法(Least-squares scheme)及實驗溫度數據來預測於各種不同鰭片間距及噴霧量下之環狀鰭管式熱交換器之垂直環狀圓鰭片上的平均總熱傳係數(Average overall heat transfer coefficient)、熱傳量(Heat transfer rate)及濕鰭片效率(Wet fin efficiency)。本文鰭片上之總熱傳係數事先假設為非均勻分佈。為了欲求得所須之平均總熱傳係數、熱傳量及濕鰭片效率,因此將整個環狀圓鰭片分割成數個小鰭片區域,並假設於每個小區域上的總熱傳係數為未知的常數。結果顯示,於自然對流條件下,鰭片上之平均總熱傳係數及濕鰭片效率會隨著鰭片間距的增大分別增加及減少,並會趨近於單一環狀圓鰭片之值。鰭片上之熱傳量也會隨著鰭片間距的增大而有增加的趨勢。
於強制對流條件下,熱傳量和平均總熱傳係數會隨著噴霧量的增加而增加,而濕鰭片效率會隨著噴霧量的增加而減少。於相同風速及相同噴霧量之下,鰭片上之平均總熱傳係數及濕鰭片效率也會分別隨著鰭片間距的增大而增加及減少,並會趨近於單一環狀圓鰭片之值。而當風速與噴霧量固定時,鰭片之熱傳量隨鰭片間距的增大而增加。為了驗證本文反算法之準確性與可靠性,本文所預測之結果將與其他相關文獻相比較。
The finite difference method in conjunction with the least-squares scheme and experimental temperature data is proposed to predict the average overall heat transfer coefficient, heat transfer rate, and wet fin efficiency on a vertical annular circular fin of annular-finned tube heat exchangers for various fin spacings and a quantities of spray. The overall heat transfer coefficient on this annular circular fin is assumed to be non-uniform. Thus the whole plate fin is divided into several sub-fin regions in order to predict the average overall heat transfer coefficient、heat transfer rate and wet fin efficiency from the knowledge of the measured temperatures. The unknown overall heat transfer coefficient on each sub-fin region can be assumed to be constant. The results show that the average overall heat transfer coefficient increases with increasing the fin spacing, and the wet fin efficiency decreases with increasing the fin spacing in natural convection. The average overall heat transfer coefficient and wet fin efficiency can approach their corresponding asymptotical value obtained from a single annular circular fin for the fin spacing above a certain value. The heat transfer rate seems to increase with increasing the fin spacing.

In forced convection, the heat transfer rate and the average overall heat transfer coefficient increase with increasing the quantities of spray, and the wet fin efficiency decreases with increasing the quantities of spray. When air speed and quantities of spray are fixed, the average overall heat transfer coefficient increase with increasing the fin spacing, and the wet fin efficiency decreases with increasing the fin spacing. The average overall heat transfer coefficient and wet fin efficiency can approach their corresponding asymptotical value obtained from a single annular circular fin for the fin spacing above a certain value. When air speed and quantities of spray are fixed, the heat transfer rate increase with increasing the fin spacing .In order to evidence the accuracy and reliability for the present inverse scheme, we make a comparison to the present results and previous results.
中文摘要…………………………………………………………… Ⅰ
英文摘要…………………………….……………………………. Ⅱ
誌謝……………………………….……………………………. Ⅳ
目錄……………………………………….……………………… Ⅴ
表目錄……………………………………………………………… Ⅷ
圖目錄……………………………………………………………… Ⅸ
符號說明…………………………………………………………… XIII

第一章 緒論…………………………………….………………… 1
1-1研究背景………………………….………………… 1
1-2 文獻回顧………………………….………………… 3
1-3 研究目的…………………………….……………… 5
1-4 研究重點與本文架構……………….……………… 6
第二章 理論分析與數值模擬………………….………………… 8
2-1 簡介…………………………….…………………. 8
2-2數學模式的建立……………….…………………… 8
2-3 數值分析方法……….……………………………. 11
2-4 逆向熱傳導問題……………….…………………… 13
2-5 結論………………………………………………… 18
第三章 自然對流之實驗操作與預測值….……………………… 22
3-1簡介…………….……………………………………… 22
3-2實驗設備…….………………………………………… 22
3-3實驗步驟…….………………………………………… 24
3-4實驗組別……………………………………………… 26
3-5結果與討論…………….……………………………… 26
第四章 強制對流之實驗操作與預測值….……………………… 47
4-1簡介…………….……………………………………… 47
4-2實驗設備…….………………………………………… 47
4-3實驗步驟…….………………………………………… 48
4-4實驗組別……………………………………………… 49
4-5結果與討論…………….……………………………… 50
第五章 綜合結論與未來展望…………………………………… 70
5-1數值模擬結果………………….…………………… 70
5-2 自然對流之預測值…………………………………… 70
5-3 強制對流之預測值…………………………………… 71
5-4綜合結論………….………….……………………… 72
5-5未來發展方向與建議….…………………………… 74
參考文獻…………………………………………………………… 75
自述…………………………………………………………… 80
[1]A.D. Kraus, A. Aziz and J. Welty, “Extended Surface Heat Transfer,” John Wiley and Sons, Inc., 2001.

[2]L.C. Chow, D.E. Tilton and M.R. Pais, “High Power Density Spray Cooling,” WRDC-TR-89-2082, Wright Laboratory, 1989.

[3]J.L. Yang, C. Chow and M.R. Paris, “Nucleate Boiling Heat Transfer in Spray Cooling,” Journal of Heat Transfer, vol. 118, pp. 668–671, 1996.

[4]M.E. Goldstein, W. Yang and J.A. Clark, “Momentum and Heat Transfer in Laminar Flow of Gas with Liquid-Droplet Suspension Over a Circular,” Journal of Heat Transfer, vol.89C, pp.185-194, 1967.

[5]J.W. Hodgson, R.T. Saterbak and J.E. Sunderland, “Experimental Investigation of Heat Transfer from Spray-Cooled Isothermal Cylinder,” ASME Journal of Heat Transfer, vol.90, pp.457-463, 1968.

[6]W.M. Yan, “Effect of Film Vaporization on Turbulent Mixed Convection Heat and Mass Transfer in a Vertical Channel,” International Journal of Heat and Mass Transfer, vol.38, pp.713-722, 1995.

[7]M.S. Sehmbey, M.R. Pais and L.C. Chow, “Effect of Surface Material Properties and Surface Characteristics in Evaporative Spray Cooling,” AIAA Journal of Thermophysics and Heat Transfer, vol.6, no.3, pp.505-512, 1992.

[8]S.S. Hsieh and C.H. Tien, “R-134a Spray Dynamics and Impingement Cooling in the Non-Boiling Regime,” International Journal of Heat and Mass Transfer, vol.50, pp.502-512, 2007.

[9]M. Ghodbane and J.P. Holman, “Experimental study of spray cooling with Freon-113,” International Journal of Heat and Mass Transfer, vol.34, pp.1163-1174, 1991.

[10]S.S. Hsieh, and T.C Fan, H.H. Tsai, “Spray Cooling Characteristics of Water and R-134a.Part Ⅱ:Transient Cooling,” International Journal of Heat and Mass Transfer, vol.47, pp.5713-5724, 2004.

[11]E.A. Slik, J. Kim and K. Kiger, “Spray Cooling of Enhanced Surface:Impact of Structured Surface Geometry and Spray Axis Inclination,” International Journal of Heat and Mass Transfer, vol.49, pp.4910-4920, 2006.

[12]G.P. Celata, M. Cumo and A. Mariani, “A Comparison between Spray Cooling and Film Flow Cooling during the Rewetting of a Hot Surface,” Heat and Mass Transfer ,vol.45, pp.1029-1035, 2009.

[13]H. Mzad and M. Tebbal, “Thermal Diagnostics of Highly Heated Surface using Water-Spray Cooling,” Heat and Mass Transfer, vol.45, pp.287-295, 2009.

[14]E.F. Crafton and W.Z Black, “Heat Transfer and Evaporation Rates of Small Liquid Droplets on Heated Horizontal Surface,” International Heat and Mass Transfer, vol.47, pp.1187-1200, 2004.

[15]L.T. Chen, “Two-Dimensional Fin Efficiency with Combined Heat and Mass Transfer between Water-Wetted Fin Surface and Moving Moist Airstream,” International Journal of Heat Fluid Flow, vol.12, pp.71-76, 1991.

[16]S.Y. Liang, T.N. Wong and G.K. Nathan, “Comparision for One-Dimensional and Two-Dimensional Models for Wet-Surface Fin Efficiency of a Plate-Fin-Tube Heat Exchanger,” Applied Thermal Engineering, vol.20, pp.941-962, 2000.

[17]S.A. Idem, A.M. Jacobi and V.W. Goldchmidt, “Heat Transfer Characterization of a Finned-Tube Heat Exchangers.” ASME Journal of Heat Transfer-Transaction, vol.112, pp.64-70, 1990.

[18]R.P. Selvam, L.C. Lin and R. Ponnappan, “Direct Simulation of Spray Cooling: Effect of Vapor Bubble Growth and Liquid Droplet Impact on Heat Transfer,” International Journal of Heat and Mass Transfer, vol.49, pp.4265-4278, 2006.

[19]R.P. Selvam, M. Sarkar and S. Sarkar, “Modeling Thermal-Boundary-Lay Effect on Liquid-Vapor Interface Dynamics in Spray Cooling,” International Journal of Heat and Mass Transfer, vol.49, pp.4265-4278, 2006.

[20]N. Sozbir , Y.W. Chang and S.C. Yao, “Heat transfer of impacting water mist on high temperature metal surfaces,” ASME Journal of Heat Transfer, vol.125, pp.70-74, 2003.

[21]M. Pais, L. Chow and E. Mahefkey, “Surface Roughness and Its Effects on the Heat Transfer Mechanism of Spray Cooling.” Journal of Heat Transfer, vol.114(1) , pp.211–219, 1992.

[22]M. Sehmbey , M. Pais and L. Chow, “A Study of Diamond Laminated Surfaces in Evaporative Spray Cooling.” Thin Solid Films, vol.212, pp.25–29,1992.

[23]R. Mesler, “Surface Roughness and It’s Effects on the Heat Transfer Mechanism of Spray Cooling.” Journal of Heat Transfer , vol.115, pp.1083– 1085, 1993.

[24]J.D. Bernadin and I. Mudawar, “The Leidenfrost Point: Experimental Study and Assessment of Existing Models.” Journal of Heat Transfer, vol.121 , pp.894–903, 1999.

[25]C. Sodtke and P. Stephan , “Spray Cooling on Micro Structured Surfaces.” International Journal of Heat Transfer, vol.50, pp.4089–4097, 2007.

[26]H.T. Chen and W.L. Hsu, “Estimation of Heat Transfer on the Fin of Annular-Finned Tube Exchangers in Natural Convection for Various Fin Spacings,” International Journal of Heat and Mass Transfer, vol.50, pp.1750-1761, 2007.

[27]H.T. Chen, W.L. Hsu, “Estimation of Heat-Transfer Characteristics on a Vertical Annular Circular Fin of Finned-Tube Heat Exchangers in Forced Convection,” International Journal of Heat and Mass Transfer, vol.51, pp.1920-1932, 2008.

[28]A. Bejan, “Heat Transfer.” John Wiley & Sons, Inc., New York, pp. 53-62, 1993.

[29]H.T. Chen, J.P. Song and Y.T. Wang , “Prediction of Heat Transfer Coefficient on the Fin Inside One-Tube Plate Finned-Tube Heat Exchangers.” International Journal of Heat and Mass Transfer, vol.48, pp.2697-2707, 2005.

[30]H.T. Chen and J.C. Chou, “Investigation of Natural-Convection Heat Transfer Coefficient on a Vertical Square Fin of Finned-Tube Heat Exchangers,” International Journal of Heat and Mass Transfer, vol.49, pp.3034-3044, 2006.

[31]F.E.M. Saboya and E.M. Sparrow, “Local and Average Heat Transfer Coefficients for One-Row Plate Fin and Tube Heat Exchanger Configurations,” ASME Journal of Heat Transfer, vol.96, pp.265-272, 1974.

[32]E.C. Rosman and P. Carajilescov, and F.E.M. Saboya, “Performance of One- and Two-Row Tube and Plate Fin Heat Exchangers,” ASME Journal of Heat Transfer, vol.106, pp.627-632, 1984.

[33]H. Ay, J.Y. Jang and J.N. Yeh, “Local Heat Transfer Measurements of Plate Finned-Tube Heat Exchangers by Infrared Thermography.” International Journal of Heat and Mass Transfer, vol.45, pp.4069-4078, 2002.

[34]J.Y. Jang, H.T. Chen and H. Ay, “The Development of High Efficiency Air-Cooled Stream Condenser for the Power Plant (2/2),” Report of National Council Science, Taiwan, NSC 92-2622-E-006-146, 2005.

[35]G.D. Raithby and K.G.T. Hollands, “Natural Convection,” in Handbook of Heat Transfer Fundamentals, 2nd ed., Rohsenow, W.M., Hartnett, J.P. and Ganic, E.N., eds, McGraw-Hill, New York, 1985.

[36]M.S. Mon and U. Gross, “Numerical Study of Fin-Spacing Effects in Annular-Finned Tube Heat Exchangers,” International Journal of Heat and Mass Transfer, vol.47, pp.1953-1964, 2004.

[37]F. Kreith and M.S. Bohn, “Principles of Heat Transfer.” 5th ed., West Publishing Company, New York, pp.347-348, 1993.

[38]X.M. Wu and R.L. Webb, “Thermal and Hydraulic Analysis of a Brazed Aluminum Evaporator,” Applied Thermal Engineering, vol.22, pp.267-278, 2002.

[39]S.N. Kondepudi and D.L. O’Neal, “Performance of Finned Tube Heat Exchangers under Frosting Conditions:Ⅱ.Comparison of Experimental Data with Model,” International Journal of Refrigeration-Revue Internationale Du Froid, vol.16, pp.181-184, 1993.

[40]D. Bougeard, “Infrared Thermography Investigation of Local Heat Transfer in a Plate Fin and Two-Tube Rows Assembly,” International Journal of Heat and Fluid Flow, vol.28, pp.988-1002, 2007.

[41]H.T. Chen and H.C. Wang, “Estimation of Heat-Transfer Characteristic on a Fin under Wet Conditions,” International Journal of Heat and Mass Transfer, vol.51, pp.2123-2138, 2008.

[42]陳軍豪, 根據實驗溫度量測值估算散熱鰭片於濕空氣下之熱傳特性,國立成功大學機械工程所, 碩士論文, 2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top