跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/06 05:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳嘉正
研究生(外文):Chia-Cheng Chen
論文名稱:方形容器內充填相變化材料微膠囊之熱能儲存特性研究
論文名稱(外文):A Study of Thermal Energy Storage Characteristics in a Square Enclosure Packed with Microencapsulated Phase Change Material
指導教授:何清政
指導教授(外文):Ching-Jenq Ho
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:89
中文關鍵詞:熱能儲存容器微膠囊相變化材料
外文關鍵詞:Thermal Energy StorageEnclosureMicroencapsulated Phase Change Material
相關次數:
  • 被引用被引用:3
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:53
  • 收藏至我的研究室書目清單書目收藏:0
本文以數值模擬與實驗量測互補方式,探討方形容器內充填相變化材料微膠囊,在等溫加熱過程中其熱能儲存變化與特性。方形容器之物理邊界條件其左右邊界分別為等溫熱壁與等溫冷壁,而上下壁面皆為絕熱壁。容器內緊密堆積的膠囊間隙的介質為空氣,膠囊內相變化材料為十八烷。本文實驗共考慮五組不同冷熱壁溫度組合如下所示:(44℃/24℃、40℃/24℃、36℃/24℃、40℃/22℃、40℃/20℃),其相關物理參數及範圍分別如下:史蒂芬數:Ste = 0.063 ~ 0.251 次冷參數:Sb = 0 ~ 0.75 。此外,針對所探討的實驗模型建構對應之數學模式,並進行相對應實驗條件之數值模擬,分析容器內微膠囊相變化材料熔解過程,進而探討其熱能儲存量及速率。
The present study aims to examine, via a complementary approach of experimental measurement and numerical simulation, thermal energy storage characteristics in a vertical square enclosure of air packed with microencapsulated phase change material. The core phase change material in the microcapsules is n-octadecane. The enclosure is differentially heated by the two vertical isothermal surfaces, while the other surfaces are considered thermally insulated. Thermal energy storage experiments have been undertaken for five sets of the hot and cold surface temperatures imposed across the enclosure as follows: (44°C/24°C, 40°C/24°C, 36°C/24°C, 40°C/22°C, 40 °C/20°C), with the corresponding dimensionless parameters in the following ranges: the Stefan number, Stem = 0.063 ~ 0.251 and the subcooling parameter, Sbc = 0 ~ 0.75. Meanwhile, numerical simulations have been performed based on a mathematical modeling mimicking the experimental
configuration considered to further elucidate the relevant heat transfer characteristics as well as the thermal energy storage efficiency of the enclosure.
第一章 序論
1-1 前言………………………………………………………………1
1-2 文獻回顧…………………………………………………………1
1-3 研究目的…………………………………………………………8
1-4 本文架構…………………………………………………………8
第二章 微膠囊相變化材料之熱物性質量測
2-1 微膠囊相變化材料………………………………………………9
2-2 熱物性質量測……………………………………………………11
2-2-1 差式熱量掃描儀(DSC)之量測…………………………………11
2-2-2 比熱計算………………………………………………………13
2-2-3 熱傳導係數量測………………………………………………14
2-2-4 密度及孔隙率之量測…………………………………………16
第三章 矩形容器內填充微膠囊之熱傳實驗模型與實驗方法
3-1 實驗模型與相關設備……………………………………………17
3-1-1 實驗模型………………………………………………………18
3-1-2 相關設備………………………………………………………22
3-2 實驗步驟…………………………………………………………23
3-3 實驗數據之計算…………………………………………………24
3-4 不準度分析………………………………………………………27
第四章 數值模擬與物理模型
4-1 物理模型…………………………………………………………28
4-2 數學模型…………………………………………………………29
4-2-1 統御方程式……………………………………………………29
4-2-2 初始條件與邊界條件…………………………………………30
4-2-3 無因次化………………………………………………………30
4-3 數值方法與解題流程……………………………………………35
4-3-1 離散方法………………………………………………………35
4-3-2 網格系統………………………………………………………35
4-3-3 解題流程………………………………………………………37
第五章 結果與討論
5-1 熱物性質量測結果………………………………………………40
5-1-1 密度與孔隙率…………………………………………………40
5-1-2 熱傳導係數……………………………………………………42
5-1-3 熔點與潛熱……………………………………………………45
5-1-4 比熱……………………………………………………………50
5-1-5 熱焓……………………………………………………………52
5-2 矩形容器內微膠囊相變化材料熱能儲存特性之結果…………53
第六章 結論與未來方向
參考文獻………………………………………………………………70
附錄不準度分析………………………………………………………74
自述……………………………………………………………………76
Abhay, P. S. C., Parida, S., Dash, V. V., “Heat capacities of 3 R-CoO (s) (R=La,Nd,Sm,Eu,Gd,Tb,Dy and Ho) by differential scanning calorimetry,” Thermochimica Acta, Vol. 465, pp. 25-29, 2007.
Arkar, C., Medved, S., “Influence of accuracy of thermal property data of a phase change material on the result of a numerical model of a packed bed latent heat storage with spheres,” Thermochimica Acta, Vol. 438 , pp. 192-201, 2005.
Bilen, K., Takgil, F., and Kaygusuz, K., “Thermal energy storage behavior of CaCl2-6H2O during melting and solidification,” Energy Sources, Vol. 30, pp. 775-787,2008.
Butala, V., Stritih, U., ”Energy saving in building with PCM cold storage,”International Journal of Energy Research, Vol. 31, pp. 1532-1544, 2007.
Castell, A., Cabeza, L.F., Garcia, D., Medrano, M., Roca, J., Sole, C., “Natural convection heat transfer coefficients in phase change material (PCM) modules with
external vertical fins,” Applied Thermal Engineering, Vol. 28, pp. 1676-1686, 2008.
Cheralathan, M., Velraj R., and Renganarayanan S., “Performance analysis on industrial refrigeration system integrated with encapsulated PCM-based cool thermal energy storage system,” International Journal of Energy Research, Vol. 31, pp. 1398-1413, 2007.
Dolado, P., Lazaro, A., Marin, J.M., Zalba, B., “PCM-air heat exchangers for free-cooling applications in buildings: Empirical model and application to design,” Energy Conversion and Management, Vol. 50, pp. 444-449, 2009.
Erek, A., Dincer, I., “Numerical heat transfer analysis of encapsulated ice thermal energy storage system with variable heat transfer coefficient in downstream,” International Journal of Heat and Mass Transfer, Vol. 52, pp. 851-859, 2009.
Hawlader, M.N.A., Uddin, M.S., Khin, M.M., “Microencapsulated PCM thermal-energy storage system,” Applied Energy, Vol. 74, pp. 195-202, 2003.
Ismail, K.A.R., Stuginsky, R., “A parametric study on possible fixed bed models for pcm and sensible heat storage,” Applied Thermal Engineering, Vol. 19, pp. 757-788, 1999.
Kribus, A., Talmatsky, E., “PCM storage for solar DHW : An unfulfilled promise,” Solar Energy, Vol. 82, pp. 861-869, 2008.
Kuznik, F., Virgone, J., and Roux, J.J., “Energetic efficiency of room wall containing PCM wallboard : A full-scale experimental investigation,” Energy and Buildings, Vol. 40, pp. 148-156, 2008.
Leland, Q.H., Harris, R.J., “Numerical analysis of heat storage phenomenon in a dual latent heat sink,” Journal of Thermophysics and Heat Transfer, Vol. 23, pp.148-155, 2008.
Li, Yu-Chu, “Differential approach for dynamic analysis to initial onset in heat flow rate spectroscopy of differential scanning calorimeter,” Thermochimica Acta, Vol. 476, pp. 1-10, 2008.
Lin, J.F., Ho, C.J., “Thermally developing forced convection for PCM suspendsions in a circular duct,” Journal of the Chinese Society of Mechanical Engineers, Vol. 26, pp. 45-53, 2005.
Mohamed, R., “Study of phase changing characteristics of granular composites using differential scanning calorimetry,” Energy Conversion and Management, 2009.
Ranz, W., and Marshall, W., “Chem. Eng. Prog.,” Vol. 48, pp. 141-156, 1952.
Tan , F.L., “Upward or downward solidification of a binary alloy inside a rectangular enclosure,” Applied Thermal Engineering, Vol. 28, pp. 1962-1973, 2008.
Wang, W., Yang, X., Fang, Y., Ding, J., and Yan, J., “Enhanced thermal conductivity and thermal performance of form-stable composite phase change material by using b-Aluminum nitride,” Applied Energy, Vol. 86, pp. 1196-1200,
2008.
何泰安, ”矩形容器內含懸浮相變化微粒之自然對流熱傳之特性實驗研究”, 國立成功大學機械工程研究所碩士論文 , 1999.
林敬峰, ”微米相變化流體在矩形熱虹迴路內熱傳特性之實驗研究” , 國立成功大學機械工程研究所碩士論文 , 2003.
劉文恭, ”方形容器內氧化鋁-水奈米流體之自然對流熱傳現象之實驗研究”, 國立成功大學機械工程研究所碩士論文 , 2007.
高志遠, ”矩形容器內添加氧化鋁微粒之相變化材料熔解現象之實驗研究”, 國立成功大學機械工程研究所碩士論文 , 2008.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top