跳到主要內容

臺灣博碩士論文加值系統

(3.236.28.137) 您好!臺灣時間:2021/07/25 20:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:孫德勳
研究生(外文):De-syun Sun
論文名稱:無閥壓電微幫浦的雷射加工製程與其應用
論文名稱(外文):Fabrication and Application of Laser Machined Valve-Less Piezoelectric Micropump
指導教授:鍾震桂
指導教授(外文):Chen-Kuei Chung
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:86
中文關鍵詞:無閥壓電微幫浦擴流器/噴嘴CFDRC微混合器
外文關鍵詞:MicromixerCFDRCMicropumpNozzle/diffuser
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
微幫浦主要的功能是要獲得精準的流量,在本文中所設計製作模擬的微幫浦屬於無閥式微幫浦,在致動器方面是採用壓電蜂鳴片,採用它的主要原因是價格便宜、致動位移量大,但是缺點是高頻時,致動位移量會急遽減小。微幫浦結構是利用壓克力板搭配雷射加工製程製作,製成簡單快速且低成本。在模擬分析方面使用CFDRC套裝軟體設計模擬分析。在無閥式微幫浦的文獻中,理論的分析通常是以穩態流體流經擴流器/噴嘴,將流量視為一固定值,但實際上微幫浦的作動,腔體內的流體是非穩態的,流量也並非為定值,是會隨著時間而改變的。故本文主的研究目的著重於探討動態模擬分析擴流器/噴嘴元件。從本文實驗量測與模擬分析中發現擴流器/噴嘴在半角5°頻率20 Hz時微幫浦有最佳的流率160 ul/min 。微幫浦應用於混合器的部份,在低頻的操作下,分子間主要藉由擴散達成混合,由於頻率5 Hz的擴散時間較長,混合效率百分比86 %最佳。
The capability of micropump is to get the accurate flow rate. In this research, the design and simulation of this micropump is adopted for valve-less micropump by using PZT to actuate the micropump. The advantages of PZT are cheap and huge actuating displacement, but the defect is rapid decreasing displacement when operating in higher frequencies. The structure of micropump is fabricated by LASER processing on PMMA and the advantages are simple, quick, and low cost. In simulations, we use CFDRC to design and simulate our models. In references of the no-valve micropump, they used steady flow to cross the Nozzle/Diffuser and fixed the flow rate in theoretical analysis. But the motions of micropump and the flow in cavity are not steady. In fact, they changed with time. So this research will focus on the transient analysis of Nozzle/Diffuser elements. From our experimental data and simulations, we can get the optimal flow rate 160 ul/min of this micropump when operating in 20 Hz and the half angle of Nozzle/Diffuser is 5°. For application, we combine a mixer to this micropump. Because of the diffuse time of frequency 5 Hz is enough to mix, we can get the best mixing effiency percent 86% while micropump operating in 5Hz.
摘要 I
Abstract II
誌 謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1-1 前言 1
1-2 微幫浦 2
1-3 閥門種類 7
1-4 無閥式微幫浦 9
1-5 文獻回顧 11
1-5-1 微幫浦實驗 12
1-5-2 微幫浦模擬 16
1-5-3 微混合器 19
1-6 研究動機與目的 23
第二章.相關理論探討 25
2-1 無閥式微幫浦理論 25
2-1-1 閥門 25
2-1-2擴流器和噴嘴的設計理論 26
2-2 壓電材料 28
2-3 CFDRC 分析理論 29
2-3-1 CFDRC 介紹 29
2-3-2 CFDRC 軟體使用流程 30
2-3-3 CFDRC 基本假設 31
2-4 雷射加工理論 33
2-5 熱接合 35
第三章 實驗架構與儀器介紹 36
3-1 實驗架構 36
3-2 微幫浦的分析 37
3-3 儀器介紹 39
3-3-1 CO2雷射加工機 40
3-3-2 光學顯微鏡 41
3-3-3 CCD影像擷取系統 42
3-3-4 波型產生器 43
3-3-5 電壓放大器 44
3-3-6 雷射位移感測器 44
第四章 實驗過程及方法 46
4-1 微幫浦結構製作 46
4-2 壓電陶瓷材料之量測 49
4-3 微幫浦結構以及壓電蜂鳴片之封裝 49
4-4 微幫浦之流量量測 51
4-5 微幫浦整合於微混合器 53
第五章 實驗結果與討論 55
5-1 穩態模擬角度對擴流器效率之影響 55
5-2 暫態模擬角度頻率對效率的影響 61
5-2-1 角度對擴流器效率η的影響 62
5-2-2 頻率對擴流器效率的影響 65
5-3 微幫浦流量量測 67
5-3-1 角度對擴流器流量之影響 67
5-3-2 致動頻率對擴流器流量之影響 68
5-3-3 致動電壓對擴流器淨流量之影響 69
5-4 微幫浦於混合器的應用 70
5-4-1 上游的混合 70
5-4-2 下游的混合 74
5-4-3 有無微幫浦致動之混合效率比較 78
第六章 結論與未來展望 79
6-1 結論 79
6-2 本文貢獻 80
6-3 未來展望 80
參考文獻 81
1.R. Rapp, W.K. Schomburg, D. Mass, J. Schulz and W. Stark, “Ligamicropump for gases and liquids”, Sensors and Actuators A, Vol. 40, pp. 57-61 (1994).
2.R. Zengerle, A. Richter, and H. Sandmaier, “A Micromembrane pump withelectrostatic actuation”, IEEE 5th International Workshop on Micro Electro Mechanical Systems (MEMS’92), pp. 31-36 (1992)
3.S. Shoji, S. Nakagawa and M. Esashi, “Micropump and sample-injector for integrated chemical analyzing systems”, Sensors and Actuators A, Vol. 21-23, pp. 189-192 (1990)
4.J. Jaesung and L.S. Seung, “Theoretical and Experimental Study of MHD (magnetohydrodynamic) Micropump”, Sensors and Actuators A, Vol.80, pp. 84-89 (2000)
5.X.N. Jiang, Z.Y. Zhou, X.Y. Huang, Y. Li, Y. Yang and C.Y. Liu, “Micronozzle/diffuser flow and its application in micro valveless pumps”, Sensors and Actuators A, Vol. 70, pp. 81-87 (1998).
6.E. Stemme and G. Stemme, “A valveless diffuser/nozzle fluid pump”, Sensorsand Actuators A, Vol. 39, pp. 159-167 (1993).
7.V. Singhal, S.V. Garimella and J.Y. Murthy, “Low reynolds number flowthrough nozzle-diffuser elements in valveless micropumps”, Sensors and Actuators A, Vol. 113, pp. 226-235 (2004).
8.I.E. Idelchik, “Handbook of hydraulic resistance”, CRC Press FL third ed. (1994).
9.F.M. White, “Fluid Mechanics”, McGraw-Hill fifth ed., Singapore (1999).
10.G.K. Artyushkina, “On the hydraulic resistance during laminar fluid flow in conical diffusers”, Tr. LPI no. 333, pp.104-106 (1973).
11.L. Smith, “Micromachined nozzles fabricated with a replicative method”, 2nd Workshop on Micromachining, Micromechanics and Microsystems ”, Micromechanics Europe, Berlin, Germany (1990).
12.E. Stemme, and G. Stemme, “A valveless diffuser/nozzle fluid pump”, Sensors and Actuators A , Vol. 39, pp. 159-167 (1993).
13.T. Gerlach and H. Wurmus, “Working principle and performance of the dynamic micropump”, Sensors and Actuators A, Vol. 50, pp. 135-140 (1995).
14.A. Olsson, G. Stemme and E. Stemme, “Diffuser-element design investigation For valve-less pumps”, Sensors and Actuators A, Vol 57, pp. 137-143 (1996).
15.A. Olssen, P. Enoksson, G.. Stemme and E. Stemme, “Micromachined flat-walledvalveless diffuser pumps”, Journal of. Micromechanics and Microengineering, Vol. 9, pp. 161-166 (1997).
16.X.N. Jiang, Z.Y. Zhou, X.Y. Huang, Y. Li, Y. Yang and C.Y. Liu, “Micronozzle/diffuser flow and its application in micro valveless Pumps”, Sensors and Actuators A, Vol. 70, pp. 81-87 (1998).
17.T. Gerlach, “Microdiffusers as dynamic passive valves for micropump applications”, Sensors and Actuators A, Vol. 69, pp. 181-191 (1998).
18.Y. H Lee, T. G Kang and Y. H Cho, “Characterization of bidirectionally oscillating dynamic flow and frequency-dependent rectification performance of microdiffusers”, Proc. Micro Electro Mechanical Systems Workshop, pp. 403-408 (2000).
19.A. Olsson, G. Stemme and E. Stemme, “Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps”, Sensors and Actuators A, Vol. 84, pp. 165-175 (2000).
20.K.S. Yang, I.Y. Chen, B.Y. Shew and C.C. Wang, “Investigation of the flow characteristics within a micronozzle/diffuser”, Journal of. Micromechanics and Microengineering, Vol. 14, pp. 26-31 (2004).
21.J.H. Kim, Y.S. Kim and C.J. Kang, “A Disposable polydimethylsiloxane-based diffuser micropump actuated by piezoelectric-disc”, Microelectronic Engineering, Vol. 71, pp. 119-124 (2004).
22.C. Yamahata, C. Lotto, E.A. Assaf and M. Gijs, “A PMMA valveless micropump using electromagnetic actuation”, Microfluid Nanofluid, Vol. 14, pp. 197-207 (2005).
23.F. Xia, S. Tadigadapa and Q. M. Zhang, “Electroactive polymer based microfluidic pump”, Sensors and Actuators A, Vol. 125, pp. 346-352 (2006).
24.T. Gerlach, “Microdiffusers as dynamic passive valves for micropump applications”, Sensors and Actuators A, Vol. 69, pp. 181-191 (1998).
25.F. M. White, “F M Fluid Mechanics”, McGraw-Hill fifth ed. (1999).
26.A. Olsson, G. Stemme and E. Stemme, “Numerical and experimental studies of flat-walled diffuser elements for valve-less micropumps”, Sensors and Actuators A, Vol. 84, pp. 165-175 (2005).
27.V. Singhal, S.V. Garimella and J.Y. Murthy, “Low reynolds number flow through nozzle-diffuser elements in valveless micropumps”, Sensors and Actuators A, Vol. 113, pp. 226-235 (2004).
28.C.L. Sun and K.H. Huang, “Numerical characterization of the flow rectification of dynamic microdiffusers”, Journal of Micromechanics and Microengineering , Vol. 16, pp. 1331-1339 (2006).
29.郭秉奇,無閥式微泵之微擴流器/噴嘴流場分析及性能研究,國立成功大學機械工程研究所碩士論文(2007).
30.N. Schwesinger, T. Frank and H. Wurmus,, “A modular microfluid system with an integrated micromixer”, Journal of Micromechanics and Microengingeering, Vol. 6, pp. 99-102 (1996).
31.M. Koch, C. Schabmueller, G.J. Evans and A. Brunnshweiler , “Micromachined chemical reaction system”, Sensor and Actuators A, Vol. 74, pp. 207-210 (1999).
32.D. Gobby, P. Angeli and A. Gavriilidis, “Mixing characteristics of t-type microfluidic mixers” , Journal of Micromechanics and Microengingeering, Vol.11, pp. 126-132 (2001).
33.D.J. Beebe, R.J. Adrian, M.G. Olsen, M.A. Stremler, B.H. Jo and H. Aref, “Passive mixing in microchannels: fabrication and flow experiments”, Journal of Mechanics and Industry, Vol. 2, pp. 343-348 (2001).
34.S. Devahastin and A.S. Mujumdar, “A numerical study of flow and mixing characteristics of laminar confined impinging streams”, Journal of Chemical Engineering, Vol. 85, pp. 215-223 (2002).
35.A.D. Stroock, S.K. Dertinger, A. Ajdar, L. Mezic, H.A. Stone and G.M. Whitesides, “Chaotic mixer for microchannels”, Science, Vol. 295, pp.647-651 (2002).
36.V. Vivek, Y. Zeng and E.S. Kim, “Novel acoustic-wave micromixer”, IEEE International Micro Electro Mechanical Systems Conference, Miyazaki, Japan, pp. 668-673 (2000).
37.Y.K. Lee, J. Deval, P. Tabeling and C.M. Ho, “Chaotic mixing in electrokinetically and pressure driven micro flows”, The 14th IEEE Workshop on MEMS, Interlaken, Switzerland, pp. 483-486 (2001).
38.Z.S. Yang, H. Matsumoto, M. Goto and R. Maedu, “Ultrasonic micromixer for microfluidic systems”, Sensors and Actuators A, Vol. 93, pp. 266-272 (2001).
39.楊愷祥,壓電無閥式微幫浦之製作與量測分析,國立雲林科技大學工程科技技術研究所博士論文 (2004)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top