跳到主要內容

臺灣博碩士論文加值系統

(3.235.120.150) 您好!臺灣時間:2021/07/31 13:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李明龍
研究生(外文):Eric Li
論文名稱:利用光子晶體增強薄膜式太陽能電池之吸收效率
論文名稱(外文):Enhance Absorption Efficiency of Thin-film Solar Cells with Photonic Crystals
指導教授:陳聯文
指導教授(外文):Lien-Wen Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:75
中文關鍵詞:光子晶體太陽能電池
外文關鍵詞:solar cellsphotonic crystalsphotovoltaic cells
相關次數:
  • 被引用被引用:1
  • 點閱點閱:488
  • 評分評分:
  • 下載下載:169
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於能源問題與環保意識的抬頭,需要一種潔淨的再生能源用來替代礦物燃料發電。其中,太陽能為一新興的綠色能源,但太陽能電池的效率卻阻礙了其在日常生活中的應用,目前在市面上的太陽能電池其平均效率約只有15%。因此,目前有許多的研究在於如何提升其效率,以期能同時解決能源及環保問題。
在本論文的研究中,主要為利用三維光子晶體做為太陽能電池之吸收層,利用其具有的慢光效應與在空間中複雜的結構分布,使得光子在太陽能電池中的留滯時間與平均光子路徑增加,以達到提升太陽能電池的吸收率之效果。
利用平面波展開法計算各種不同結構之下的三維光子晶體能隙,以找出具有慢光效應的頻率區段。接著,利用時域有限差分法配合週期性邊界條件來模擬吸收層的動態特性。由模擬的結果可看出,在和一般的太陽能吸收層比較之下,利用三維光子晶體吸收層的確能有效地將吸收效率提升30%以上。其中,具有慢光效應的簡單立方結構吸收層在和一般太陽能電池吸收層比較之下,其吸收率更可提升45%。而和利用二維光柵背反射層的太陽能電池吸收層比較之下,吸收率亦提升了10%。
The search for alternative energy sources in the 21st century is a growing academic and industrial pursuit. A promising energy source is photovoltaics. However, the low efficiency of photovoltaic cells has been a primary drawback in its large-scale application, the general efficiency is just around 15%.
In this study, we design a new absorb layer, which introduce three-dimensional photonic crystals, in Solar Cells. Its slow light effect and complicated structure lead to long optical path lengths and long dwell times before the light beam exits the layer. Therefore, the absorbed efficiency of the solar cells will be enhanced.
First, we use the plane wave expansion method (PWM) to compute the band structures of three-dimensional photonic crystal bandgap with different kinds of lattice to figure out frequency range, which exist slow light effect in specific direction. Then, using the finite difference time domain (FDTD) numerical method to simulate the optical behavior in the layers. The periodic boundary conditions are applied. Numerical results indicate that, the new absorb layers with three-dimensional photonic crystals can enhance over than 30% absorbed efficiency comparing with general absorb layers. Moreover, the simple cubic structure, which has slow light effect, can enhance 45% absorbed efficiency. And comparing with two-dimensional grating back reflector, our design can also enhance 10% efficiency.
摘要 I
Abstract II
目錄 IV
表目錄 VI
圖目錄 VII
符號說明 XIII
第一章 緒論 1
1-1前言 1
1-1-1 太陽能電池 1
1-1-2 光子晶體 4
1-2 文獻回顧 6
1-3 本文架構 8
第二章 光子晶體能隙 15
2-1前言 15
2-2 平面波展開法 16
2-3常見三維光子晶體結構 17
2-3-1 簡單立方晶格 (Simple Cubic lattice) 18
2-3-2 體心立方晶格 (Body Centered Cubic lattice, BCC) 20
2-3-3 面心立方晶格 (Face Centered Cubic lattice, FCC) 20
2-3-4 鑽石結構晶格 (Diamond cubic lattice) 21
第三章 時域有限差分法 33
3-1 前言 33
3-2 時域有限差分法 34
3-2-1 Maxwell方程式與Yee’s演算法 34
3-2-2 完美匹配吸收層(perfectly matched layer) 36
3-2-3 太陽能電池吸收層模擬 41
第四章 三維光子晶體應用於太陽能電池吸收層 50
4-1 前言 50
4-2 設計概念 52
4-3 平面波展開法與時域有限差分法模擬 52
4-4 結果比較與討論 55
第五章 綜合討論與未來展望 67
5-1 綜合討論 67
5-2 未來展望 68
參考文獻 70
1.A. Bielawny, C. Rockstuhl, F. Lederer, and R.B. Wehrspohn, “Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells,” Optics Express. Vol. 17, No. 10, 8439-46 (2009).
2.B. O'Regan and M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature. Vol. 353, No. 6346, 737-740 (1991).
3.M. Yamaguchi and C. Amano, “Efficiency calculations of thin-film GaAs solar cells on Si substrates,” Journal of Applied Physics. Vol. 58, No. 9, 3601-3606 (1985).
4.K. Barnham, J. Connolly, P. Griffin, G. Haarpaintner, J. Nelson, E. Tsui, A. Zachariou, J. Osborne, C. Button, G. Hill, M. Hopkinson, M. Pate, J. Roberts, and T. Foxon, “Voltage enhancement in quantum well solar cells,” Journal of Applied Physics. Vol. 80, No. 2, 1201-1206 (1996).
5.R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N.H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Applied Physics Letters. Vol. 90, No. 18, 183516 (2007).
6.E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Physical Review Letters. Vol. 58, No. 20, 2059 (1987).
7.S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters. Vol. 58, No. 23, 2486 (1987).
8.E. Yablonovitch, T.J. Gmitter, and K.M. Leung, “Photonic band structure: The face-centered-cubic case employing nonspherical atoms,” Physical Review Letters. Vol. 67, No. 17, 2295 (1991).
9.K.M. Ho, C.T. Chan, C.M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: New layer-by-layer periodic structures,” Solid State Communications. Vol. 89, No. 5, 413-416 (1994).
10.S.-Y. Lin and J.G. Fleming, “A Three-Dimensional Optical Photonic Crystal,” Journal of Lightwave Technology. Vol. 17, No. 11, (1999).
11.S. Noda, N. Yamamoto, M. Imada, H. Kobayashi, and M. Okano, “Alignment and Stacking of Semiconductor Photonic Bands by Wafer-Fusion,” Journal of Lightwave Technol. Vol. 17, No. 11, 1948-1955 (1999).
12.J.D. Joannopoulos, “Photonics: Self-assembly lights up,” Nature. Vol. 414, No. 6861, 257-258 (2001).
13.Y.A. Vlasov, X.-Z. Bo, J.C. Sturm, and D.J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature. Vol. 414, No. 6861, 289-293 (2001).
14.B. Gralak, S. Enoch, and G. Tayeb, “Anomalous refractive properties of photonic crystals,” Journal of the Optical Society of America A. Vol. 17, No. 6, 1012-1020 (2000).
15.M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,” Physical Review B. Vol. 62, No. 16, 10696 (2000).
16.J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” Selected Topics in Quantum Electronics, IEEE Journal of. Vol. 8, No. 6, 1246-1257 (2002).
17.T. Baba, “Slow light in photonic crystals,” Nat Photon. Vol. 2, No. 8, 465-473 (2008).
18.G. D'Aguanno, M. Centini, M. Scalora, C. Sibilia, M. Bertolotti, E. Fazio, C.M. Bowden, and M.J. Bloemer, “Slowing light in chi (2) photonic crystals,” Physical Review E. Vol. 68, No. 4, 046613 (2003).
19.S.-Y. Lin, E. Chow, V. Hietala, P.R. Villeneuve, and J.D. Joannopoulos, “Experimental Demonstration of Guiding and Bending of Electromagnetic Waves in a Photonic Crystal,” Science. Vol. 282, No. 5387, 274-276 (1998).
20.S. Fan, S.G. Johnson, J.D. Joannopoulos, C. Manolatou, and H.A. Haus, “Waveguide branches in photonic crystals,” Journal of the Optical Society of America B. Vol. 18, No. 2, 162-165 (2001).
21.S. Fan, P.R. Villeneuve, J.D. Joannopoulos, and H.A. Haus, “Channel Drop Tunneling through Localized States,” Physical Review Letters. Vol. 80, No. 5, 960 (1998).
22.J.B. Pendry, “Negative Refraction Makes a Perfect Lens,” Physical Review Letters. Vol. 85, No. 18, 3966 (2000).
23.P. Russell, “Photonic Crystal Fibers,” Science. Vol. 299, No. 5605, 358-362 (2003).
24.C.Y. Liu and L.W. Chen, “Tunable photonic-crystal waveguide Mach-Zehnder interferometer achieved by nematic liquid-crystal phase modulation,” Optics Express. Vol. 12, No. 12, 2616-24 (2004).
25.C.Y. Liu and L.W. Chen, “Tunable photonic crystal waveguide coupler with nematic liquid crystals,” IEEE Photonics Technology Letters. Vol. 16, No. 8, 1849-1851 (2004).
26.C.-Y. Liu and L.-W. Chen, “Tunable band gap in a photonic crystal modulated by a nematic liquid crystal,” Physical Review B. Vol. 72, No. 4, 045133 (2005).
27.S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature. Vol. 407, No. 6804, 608-610 (2000).
28.E. Yablonovitch and T.J. Gmitter, “Photonic band structure: The face-centered-cubic case,” Physical Review Letters. Vol. 63, No. 18, 1950 (1989).
29.K.M. Ho, C.T. Chan, and C.M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Physical Review Letters. Vol. 65, No. 25, 3152 (1990).
30.P.M. Bell, J.B. Pendry, L.M. Moreno, and A.J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Computer Physics Communications. Vol. 85, No. 2, 306-322 (1995).
31.C.T. Chan, Q.L. Yu, and K.M. Ho, “Order-N spectral method for electromagnetic waves,” Physical Review B. Vol. 51, No. 23, 16635 (1995).
32.X. Wang, X.G. Zhang, Q. Yu, and B.N. Harmon, “Multiple-scattering theory for electromagnetic waves,” Physical Review B. Vol. 47, No. 8, 4161 (1993).
33.M. Florescu, H. Lee, I. Puscasu, M. Pralle, L. Florescu, D. Z. Ting, and J.P. Dowling, “Improving solar cell efficiency using photonic band-gap materials,” Solar Energy Materials and Solar Cells. Vol. 91, No. 17, 1599-1610 (2007).
34.S. Fahr, C. Ulbrich, T. Kirchartz, U. Rau, C. Rockstuhl, and F. Lederer, “Rugate filter for light-trapping in solar cells,” Optics Express. Vol. 16, No. 13, 9332-43 (2008).
35.D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” Journal of Applied Physics. Vol. 103, No. 9, 093102 (2008).
36.A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Physical Review A (Atomic, Molecular, and Optical Physics). Vol. 78, No. 2, 023825 (2008).
37.P. Bermel, C. Luo, L. Zeng, L.C. Kimerling, and J.D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Optics Express. Vol. 15, No. 25, 16986-17000 (2007).
38.L. Zeng, P. Bermel, Y. Yi, B.A. Alamariu, K.A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L.C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Applied Physics Letters. Vol. 93, No. 22, 221105 (2008).
39.M.A. Green,"Third Generation Photovoltaics: Advanced Solar Energy Conversion". Springer.(2004)
40.J. D. Joannopoulos, R. D. Meade, and J. N. Winn,"Photonic Crystals". Princeton U. press, Princeton, N. J.,(1995)
41.K. Busch, “Photonic band structure theory: assessment and perspectives,” Comptes Rendus Physique. Vol. 3, No. 1, 53-66 (2002).
42.M.A. Green, K. Emery, Y. Hisikawa, and W. Warta, “Solar Cell Efficiency Tables (Version 33),” Progress in Photovoltaics: Research and Applications. Vol. 17, No. 1, 85-94 (2009).
43.J.P. Dowling, M. Scalora, M.J. Bloemer, and C.M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” Journal of Applied Physics. Vol. 75, No. 4, 1896-1899 (1994).
44.E.D. Palik,"Handbook of Optical Constants of Solids". Boston: Academic Press.(1997)
45.S. Guo and S. Albin, “Simple plane wave implementation for photonic crystal calculations,” Optics Express. Vol. 11, No. 2, 167-75 (2003).
46.S.G. Johnson and J.D. Joannopoulos, “Designing synthetic optical media: photonic crystals,” Acta Materialia. Vol. 51, No. 19, 5823-5835 (2003).
47.K.S. YEE, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations In Isotropic Media,” IEEE Transactions on Antennas and Propagation. Vol. AP-14, No., 802-807 (1966).
48.J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics. Vol. 114, No. 2, 185-200 (1994).
49.Z.S. Sacks, D.M. Kingsland, R. Lee, and J.-F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Transactions. Antennas and Propagation,. Vol. 43, No. 12, 1460-1463 (1995).
50.S.D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Transactions on Antennas and Propagation. Vol. 44, No. 12, 1630-1639 (1996).
51.A. Taflove,"Computational Electrodynamics: The Finite-Difference Time-Domain Method.". Norwood, MA: Artech House.(1995)
52.T. Uusitupa, K. Karkkainen, and K. Nikoskinen, “Studying 1200 PBG waveguide bend using FDTD,” Microwave and Optical Technology Letters. Vol. 39, 326-333 (2003).
53.J.-P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics. Vol. 127, No. 2, 363-379 (1996).
54.王俊智, “光子晶體之光塞取濾波器,” 國立成功大學,碩士論文. (2004).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top