跳到主要內容

臺灣博碩士論文加值系統

(3.95.131.146) 您好!臺灣時間:2021/07/25 14:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林庭甫
研究生(外文):Ting-Fu Lin
論文名稱:利用奈米壓痕技術探討固液界面親和力對液體黏度影響之研究
論文名稱(外文):The Study of Effects of The Solid - Liquid Interfacial Interactions on The Viscosity of Liquid via Nanoindentation Technique
指導教授:林仁輝
指導教授(外文):Jen-Fin Lin
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:67
中文關鍵詞:黏度液動壓高定向熱解石墨界面親和力
外文關鍵詞:hydrodynamicsviscosityabsorptivenessHOPG
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討的是受擠壓於平板間的液體,其液體的黏度變化與固液界面親和力大小的關係。本研究液體採用的是正十四烷(C14H30)及水,下試件選擇的是高定相熱解石墨及雲母,特點在於用液動壓的模型求出液體受壓時的黏度變化,並針對黏度變化差異進行討論。
  實驗部份,以奈米壓痕機的球型壓頭接近下試件-雲母或高定相熱解石墨,兩者間距中為實驗液體-正十四烷或水,以此得到整個過程中負載-壓深關係圖。理論部份,先以赫茲接觸理論判斷出液體受擠壓產生抵抗力的區域,分析此區域壓頭上的壓力分布,將壓頭徑向方向微分成小區域,每個部分以平板間的液動壓模型描述之。液動壓模型中包含間距及黏度函數,間距分布方面,由機台紀錄之位移減去壓頭與試件的接觸點為球頭中心間距,需再加上球頭幾何關係如圖(2.3.2)得徑向間距分布,並考慮液體產生的壓力場會使下試件變形,吾人利用彈液動理論得到下試件變形場的分布加以修正其間距;黏度函數方面,提出類似高斯分布的模型,特點是描述黏度達極值後會往下降。上述兩函數分布代入液動壓模型可得球頭壓力分布,再用計算其總力與實驗值進行驗證,其誤差值小於1%,使確立黏度模型的可信度。
  利用接觸角實驗確定四種固液組合的界面親和力大小關係。以同一種液體對於不同試件的黏度變化進行討論,固液界面親和力成為唯一變數,若固液界面親和力越大固體越容易抓住第一層液體分子,造成液體受擠壓而移動時阻力增加不易往兩側排開,直到排開的力大於固液界面親和力時,第一層分子也跟著滑移造成剪應變率上升而黏度下降。由得到的結果可以發現,不論液體是水或正十四烷,對於較親和的固體其液體黏度上升的極值越高、越能承受更大壓力與液體在間距較小時才潰散。
The aim of this paper is to discuss the relationship of the variation of liquid’s viscosity and the solid-liquid absorptiveness, which the liquid is under squeeze between two plates. The equation of hydrodynamics is used to find the variation of the liquid’s viscosity under squeeze. There are four different kinds of solid-liquid combination. n-Tetracane(C14H30) and water are used as the experimental liquids, and mica and highly oriented pyrolytic graphite(HOPG) are used as the specimens.
In nanoindentation, a spherical indenter was moved to approach mica and highly oriented pyrolytic graphite specimens immersed in n-Tetracane and water liquids in order to know the load-depth data.
The area where the liquid under squeeze with repulsive force can be found through Hertzian contact theory. The repulsive force is used to certify whether the calculations result is close. The equation of hydrodynamics includes function of gap and function of viscosity. The function of gap can be known by depth data cut the location of Hertzian contact, the geometric of spherical indenter and the elastohydrodynamic theory as figure (2.3.2). An important part to know the function of viscosity is a Gaussian-like distribution, which its character is that the viscosity goes down when it reaches the maximum value. According to two functions above, the theoretical value of the pressure distribution under the indenter can be calculated. The reliability of the viscosity model can be known when the error of theoretical value and experimental value are under 1%.
Using contact angle experiment, the relationship of interface absorptiveness of four different kinds of solid-liquid combinations can be known. The solid-liquid interface absorptiveness becomes the only variable to variation of viscosity under the circumstance which one liquid combines with different specimens. The friction force increases when the solid-liquid interface absorptiveness enhances because the absorptiveness of the liquids near the solid surface is higher. As the liquid near the solid surface slips, shear strain rate increases and viscosity decreases. For all cases, the tendency of viscosity maximum is consistent with solid-liquid absorptiveness. It implies that strong solid-liquid absorptiveness enhances viscosity, which is helpful for resistance against squeeze out.
摘 要 I
Abstract III
誌 謝 V
目錄 VI
表目錄 VIII
圖目錄 IX
符號說明 XII
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究目的與內容 4
第二章 基本理論 7
2.1 以圓球壓頭測試並分析材料機械性質 7
2.1.1 彈性接觸理論 7
2.1.2 彈性的負載及壓深函數 9
2.2 液動壓理論 10
2.3 建立因液動壓造成的下試件變形場 14
2.3.1 彈液動理論 14
2.3.2 Love 理論 15
2.4以高斯分布表示液體黏滯係數隨著膜厚變化 16
2.5 數值疊代的程序 18
第三章 實驗規劃 27
3.1 實驗目的 27
3.2 試件選擇及製備 27
3.2.1 選擇試件 27
3.2.2 試件製備 28
3.3 壓痕實驗 28
3.3.1 壓痕試驗機及壓頭規格 29
3.3.2 壓痕試驗流程 30
第四章 結果與討論 35
4.1 從實驗數據選取過渡區域 35
4.2 液體與不同固體間的界面親和力大小 36
4.3 液動壓分布 37
4.4 變形場分布 38
4.5 理論值與實驗驗證 39
4.6 黏度隨著膜厚變化 40
4.7 液體黏度差異性討論 41
4.7.1 正十四烷黏度變化的討論 41
4.7.2 水黏度變化的討論 42
第五章 結論與未來研究 62
5.1 結論 62
5.2 未來研究方向 64
參考文獻 65
[1]B.N.J. Persson, Sliding Friction, 2nd ed. Springer-Verlag, Berlin, 2000.
[2]A. Maali, T. Cohen-Bouhacina, G. Couturier, and J.P. Aime, “Oscillatory dissipation of a simple confined liquid.” Physical Review Letters 96 (2006) 086105.
[3]T. Uchihashi, M. Higgins, Y. Nakayama, J.E. Sader, and S.P. Jarvis, “Quantitative measurement of solvation shells using frequency modulated atomic force microscopy.” Nanotechnology 16 (2005) 49.
[4]I.M. Sivebaek, V.N. Samoilov, and B.N.J. Persson, “Squeezing molecular thin alkane lubrication films between curved solid surfaces with long-range elasticity: Layering transitions and wear.” Journal of Chemical Physics 119 (2003) 2314.
[5]N.N. Gosvami, S.K. Sinha, W. Hofbauer, and S.J. O'Shea, “Solvation and squeeze out of hexadecane on graphite.” Journal of Chemical Physics 126 (2007) 214708.
[6]S. Granick, “Motions and relaxations of confined liquids.” Science 253 (1991) 1374.
[7]J. Klein, and E. Kumacheva, “Simple liquids confined to molecularly thin layers. I. Confinement-induced liquid-to-solid phase transitions.” Journal of Chemical Physics 108 (1998) 6996.
[8]T. Becker, and F. Mugele: Nanofluidics, “Viscous dissipation in layered liquid films.” Physical Review Letters 91 (2003) 166104.
[9]S.J. Oshea, M.E. Welland, and J.B. Pethica, “Atomic-force microscopy of local compliance at solid-liquid interfaces.” Chemical Physics Letters 223 (1994) 336.
[10]S.J. Oshea, M.E. Welland, and T. Rayment, “Solvation forces near a graphite surface measured with an atomic force microscope.” Applied Physics Letters 60 (1992) 2356.
[11]B.N.J. Persson, and E. Tosatti, “Layering transition in confined molecular thin films: Nucleation and growth.” Physical Review B 50 (1994) 5590.
[12]Y.K. Cho, L. Cai, and S. Granick, “Molecular tribology of lubricants and additives.” Tribology International 30 (1997) 889.
[13]Y.X. Zhu, and S. Granick, “Reassessment of solidification in fluids confined between mica sheets.” Langmuir 19 (2003) 8148.
[14]Y.X. Zhu, and S. Granick, “Superlubricity : A paradox about confined fluids resolved.” Physical Review Letters 93 (2004) 096101.
[15]Y.X. Zhu, and S. Granick, “Rate-dependent slip of Newtonian liquid at smooth surfaces.” Physical Review Letters 87 (2001) 096105.
[16]Y.X. Zhu, and S. Granick, “Limits of the hydrodynamic no-slip boundary condition.” Physical Review Letters 88 (2002) 106102.
[17]S. Bair, Y.C. Liu, and Q.J. Wang, “The pressure-viscosity coefficient for Newtonian EHL film thickness with general piezoviscous response.” Journal of Tribology-Transactions of the Asme 128 (2006) 624.
[18]H. Hertz, “On the contact of elastic solids,” J. Reine Angew. Math 92 (1881) 156.
[19]I.N. Sneddon, “The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile,” Int. J. Eng. Sci 3 (1965) 47.
[20]D.A. Spence, “Self similar solutions to adhesive contact problems with incremental loading,” Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences 305 (1968) 55.
[21]R.B. King, “Elastic analysis of some punch problems for a layered medium,” International Journal of Solids and Structures 23 (1987) 1657.
[22]W.C. Oliver, G.M. Pharr, “Improved technique for determining
hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research 7 (1992) 1564.
[23]H. Hertz, Miscellaneous Papers, Macmillan London (1896)
[24]B.J. Hamrock, Fundamentals of fluid film lubrication, 2nd ed. McGraw-Hill, New York, 2004.
[25]A.E.H. Love, “Stress Produced in a semi-infinite solid by pressure on part of the boundary,” Phil. Trans. Royal Society 377 (1929)
[26]S.P. Timoshenko, and J.N. Goodier, Theory of Elasticity, 3rd ed. McGraw-Hill, New York, 1970.
[27]Y.K. Cho, L. Cai, and S. Granick, “Molecular tribology of lubricants and additives,” Tribology International 30 (1997) 889.
[28]J.P. Rabe, and S. Buchholz, “Commensurability and mobility in 2-dimensional molecular-patterns on graphite.” Science 253 (1991) 424.
[29]Hysitron Incorporation, http://www.hysitron.com/.
[30]E. Dickinson, “Pressure-dependence of shear viscosity in normal-alkane and dimethylsiloxane mixtures.” Journal of Physical Chemistry 81 (1977) 2108.
[31]J.H. Dymond, and H.A. Oye, “Viscosity of selected liquid n-alkanes.” Journal of Physical and Chemical Reference Data 23 (1994) 41.
[32]T.X. Phuoc, and M. Massoudi, “Experimental observations of the effects of shear rates and particle concentration on the viscosity of Fe2O3 –deionized water nanofluids.” International Journal of Thermal Sciences 48 (2009) 1294.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top