跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/03 21:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉建濠
研究生(外文):Jian-Hao Liou
論文名稱:分析撓性機構之計算模型:軟體開發與實驗驗證
論文名稱(外文):Computational Models for Analyzing Compliant Mechanisms: Software Development with Experiments
指導教授:藍兆杰藍兆杰引用關係
指導教授(外文):Chao-Chieh Lan
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系碩博士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:67
中文關鍵詞:嵌合扣件撓性機構能量法撓性機構設計分析工具
外文關鍵詞:Energy methoddesign tool for compliantcompliant mechanismsnap-fit assembly
相關次數:
  • 被引用被引用:1
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:56
  • 收藏至我的研究室書目清單書目收藏:0
本論文目的為發展出一套用於分析撓性機構之計算工具。相異於傳統之剛體機構,一體成型的撓性機構具有零磨耗、無背間隙及可微小化等優點,因此在許多應用上可取代剛體機構。但撓性機構的分析較為複雜,所以我們發展出一套可廣泛被應用且運算快速之簡易撓性機構分析設計圖型界面軟體,其中包含三類分析:第一為靜態分析,提供
使用者設計撓性機構的原型,並經由模擬分析的結果來修改其原型;第二為動態分析,其提供了四種常見撓性機構的分析-懸臂樑、雙單擺、曲柄滑塊機構與四連桿機構;第三為提供設計嵌合扣件之幾何形狀時的接觸力分析。我們利用能量法為基礎來發展上述之撓性機構計算模型,對於靜動態分析,分別進行實驗以驗證其準確性,並與商業軟體比較計算優越性。對於接觸力分析,利用最小位能原理配合序列二次規劃法(SQP)來解決接觸模型之問題,以求得扣件變形與受力,並進行實驗來測量嵌合扣件之受力以驗證比較。期望此軟體能提供使用者在設計撓性機構時一個運算快速且準確的分析工具。
The development of an analyzing tool for compliant mechanisms is presented in this thesis. The monolithic compliant mechanisms which are different from rigid body mechanisms have no friction/backlash and are capable of miniaturization, hence rigid body mechanisms can be replaced by compliant mechanisms in many applications. Since the analysis of compliant mechanism is much complicated, we develop a simple analysis tool equipped with graphical user interface which can be used for compliant mechanisms widely and efficiently. There are three types of analyses. Static toolbox is used for static analysis, users employ it to design and analyze the prototypes of compliant mechanisms. Dynamic toolbox is used for dynamic analysis of compliant mechanisms which consist of cantilever beam, double pendulum, slider crank mechanism and four-bar mechanism. And Snap-fit toolbox is used to solve the contact problem with different geometries of snap-fit. We develop the above analysis models of compliant mechanisms based on energy method. For the static and dynamic analyses, we perform experiments for validations and compare the simulations with commercial software for efficiency of calculations. For the contact model, we use the principle of minimum potential energy and sequential quadratic programming (SQP) to obtain the deformed shape and contact force of snap-fit. We further perform an experiment to measure the contact force of snap-fit assembly for validation. We expect this analysis tool can offer efficient and accurate analyses
while users use this tool to design compliant mechanisms.
摘要 ..................................................................................................................... I
ABSTRACT ........................................................................................................ II
致謝 ................................................................................................................. III
LIST OF CONTENTS ...................................................................................... IV
LIST OF TABLES ............................................................................................. VI
LIST OF FIGURES ......................................................................................... VII
LIST OF SYMBOLS .......................................................................................... X
CHAPTER 1 INTRODUCTION ....................................................................... 1
1.1 Introduction of Compliant Mechanisms ........................................................................... 1
1.2 Review of Dynamic Models for Complaint Mechanisms ................................................ 2
1.3 Review of Contact Models for Snap-fits .......................................................................... 4
1.4 Review of Compliant Mechanism Design Tools .............................................................. 5
1.5 Motivations and Objectives .............................................................................................. 6
1.6 Organization of Thesis ...................................................................................................... 7
CHAPTER 2 DYNAMIC MODEL FOR COMPLIANT MECHANISMS ... 9
2.1 Introduction ...................................................................................................................... 9
2.2 Generalized Multiple Shooting Method (GMSM) ........................................................... 9
2.3 Boundary Conditions for Various Illustrative Examples ................................................ 14
2.3.1 Boundary conditions of a cantilever beam ........................................................................... 15
2.3.2 Boundary conditions of a double pendulum ......................................................................... 16
2.3.3 Boundary conditions of a slider crank mechanism ............................................................... 18
2.3.4 Boundary conditions of a four-bar mechanism .................................................................... 19
2.4 Temporal Approximation ................................................................................................ 21
2.5 Simulations and Verifications ......................................................................................... 23
2.6 Conclusions .................................................................................................................... 27
CHAPTER 3 EXPERIMENTAL VALIDATIONS OF THE DYNAMIC
MODEL 29
3.1 Introduction .................................................................................................................... 29
3.2 Experiment of a Transversely Vibrating Cantilever Beam ............................................. 29
3.3 Experiment of a Compliant Four-bar Mechanism .......................................................... 34
3.4 Conclusions .................................................................................................................... 36
CHAPTER 4 A CONTACT MODEL FOR COMPLIANT FINGERS ........ 38
4.1 Introduction .................................................................................................................... 38
4.2 Mathematical Model of Contact Problem with Compliant Finger ................................. 38
4.3 Simulations with Experimental Validations ................................................................... 42
4.4 Conclusions .................................................................................................................... 45
CHAPTER 5 DEVELOPMENT OF A COMPLIANT MECHANISM
DESIGN TOOL ................................................................................................. 47
5.1 Introduction .................................................................................................................... 47
5.2 Static Toolbox ................................................................................................................. 48
5.3 Dynamic toolbox ............................................................................................................ 54
5.4 Snap-fit Toolbox ............................................................................................................. 58
5.5 Conclusions .................................................................................................................... 59
CHAPTER 6 CONCLUSIONS AND FUTURE WORKS ............................. 60
6.1 Conclusions .................................................................................................................... 60
6.2 Future Works .................................................................................................................. 61
REFERENCES .................................................................................................. 63
[1]Moore, E. Z., Campbell D., Grimminger, F. and Buehler M., 2002, “Reliable Stair Climbing in the Simple Hexapod ‘RHex’,” International Conference on Robotics & Automation, Washington, DC.
[2]Dollar, A. M. and Howe, R. D., 2006, “A Robust Compliant Grasper via Shape Deposition Manufacturing,” IEEE/ASME Transactions on Mechatronics, 11(2), pp. 154-161.
[3]Lu, K. J. and Kota, S., 2002, “Compliant Mechanism Synthesis for Shape-Change Applications: Preliminary Results,” Smart Structures and Materials, pp. 162-172.
[4]Tsui, K., Geisberger, A. A., Ellis, M. and Skidmore, G. D., 2004, “Micromachined End-effector and Techniques for Directed MEMS Assembly,” Journal of Micromechanics and Microengineering, 14, pp. 542–549.
[5]Schwertassek, R., Wallrapp, O. and Shabana, A. A., 1999, “Flexible Multibody Simulation and Choice of Shape Functions,” Journal of Nonlinear Dynamics, 20, pp. 361–380.
[6]Rakin. C. C. and Brogan, F. A., 1986, “An Element Independent Corotational Procedure for the Treatment of Large Rotations,” ASME Journal of Pressure Vessel Technology, 108, pp. 165-174.
[7]Behdinan, K., Stylianou, M. C., and Tabarrok, B., 1998, “Co-rotational Dynamic Analysis of Flexible Beams,” Journal of Computer Methods in Applied Mechanics and Engineering, 154, pp. 151-161.
[8]Hsiao, K. M. and Yang, R. T., 1993, “A Corotational Formulation for Nonlinear Dynamic Analysis of Curved Euler Beam,” Journal of Computers and Structures, 54(6), pp. 1091-1097.
[9]Crisfield, M. A., Galvanetto, U. and Jelenić, G., 1997, “Dynamics of 3-D Co-rotational Beams,” Journal of Computational Mechanics, 20, pp. 507-519.
[10]Simo, J. C. and Vu-Quoc, L, 1986, “On the Dynamic of Flexible Beams under large Overall Motions – The Plane Case: Part I,” ASME Journal of Applied Mechanics, 53, pp. 849-854.
[11]Simo, J. C. and Vu-Quoc, L, 1986, “On the Dynamic of Flexible Beams under large Overall Motions – The Plane Case: Part II,” ASME Journal of Applied Mechanics, 53, pp. 855-863.
[12]Shabana, A. A., 1998, “Dynamics of Multibody System,” Wiley, N.Y.
[13]Mikkola, A. M. and Shabana, A. A., 2001, “A New Plate Element Based on the Absolute Nodal Coordinate Formulation,” ASME Design Engineering Technical Conference, Pittsburgh, PA.
[14]Shabana, A. A. and Yakoub, R. Y., 2001, “Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory,” ASME Journal of Mechanical Design, 123(4), pp. 606-613.
[15]Shabana, A. A. and Yakoub, R. Y., 2001, “Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications,” ASME Journal of Mechanical Design, 123(4), pp. 606-613.
[16]Yoo, W. S., Kim, M. S., Mun, S. H. and Shon, J. H., 2006, “Large Displacement of Beam with Base Motion: Flexible Multibody Simulations and Experiments,” Computer Methods in Applied Mechanics and Engineering, 195, pp. 7036–7051.
[17]Campanelli, M., Berzeri, M. and Shabana, A. A., 2000, “Performance of the Incremental and Non-Incremental Finite Element Formulations in Flexible Multibody Problems,” ASME Journal of Mechanical Design, 122(4), pp. 498-507.
[18]Gerstmayr. J, 2003, “Strain Tensors in the Absolute Nodal Coordinate and the Floating Frame of Reference Formulation,” Nonlinear Dynamics, 34, pp. 133–145.
[19]Wasfy, T.M. and Noor, A. K., 2003, “Computational strategies for flexible multibody systems,” ASME Journal of Applied Mechanics, 56(6), pp. 553-613.
[20]Bonenberger, P. R., 2000, “The First Snap-fit Handbook: Creating Attachments for Plastic Parts,” Hanser Gardner Publications, Cincinnati, OH.
[21]Saitou, K. and Jakiela, M. J., 1996, “Design Self-closing Compliant “Mouse Trap for Micro Assembly”,” ASME International Mechanical Engineering Congress and Exposition, pp. 1-6.
[22]Raucent, B., Nederlandt, Ch. and Johnson, D. A., 1997, “Plastic Snap-fit Fastener Design,” Journal of Advanced Manufacturing Technology, 14, pp. 185-190.
[23]Gupta, M., 1997, “Analysis of Nonlinearly Elastic CantiIever Snap Beam for Assembly Plastic Parts,” Polymer Engineering and Science, 37(11), pp. 1901-1906.
[24]Suri, G. and Luscher, A. F., 2006, “Development of Analytical Model of Cantilever Hook Performance,” Journal of Mechanical Design, 128, pp. 479-493.
[25]Jorabchi, K. and Suresh, K., 2009, “Nonlinear Algebraic Reduction for Snap-Fit Simulation,” Journal of Mechanical Design, 131(6), 061004.
[26]Suri, G. and Luscher, A. F., 2000, “Structural Abstraction in Snap-fit Analysis,” Journal of Mechanical Design, 122, pp. 395-402.
[27]Culpepper, M. L. and Kim, S., 2004, “A Framework and Design Synthesis Tool Used to Generate, Evaluate and Optimize Compliant Mechanism Concepts for Research and Education Activities,” International Design Engineering Technical Conference, Salt Lake City, Utah.
[28]http://www.coe.uncc.edu/~jsraquet/java/ItsASnapApplet.html
[29]Oh, J. S., Lewis, D. Q., Lee, D. and Gabriele, G. A., 1999, “JAVA™ -Based Design Calculator for Integral Snap-Fits,” ASME Design Engineering Technical Conferences, Las Vegas, Nevada.
[30]Brock, J. M. and Wright, P. K., 2002, “Design Tool for Injection Molded Snap Fits in Consumer Products,” Journal of Manufacturing Systems, 21(1), pp. 32-39.
[31]Lan, C. C. and Lee, K. M., 2006, “Generalized Shooting Method for Analyzing Compliant Mechanisms with Curved Members,” ASME Journal of Mechanical Design, 128, pp. 765-775.
[32]Reddy, J. N., 1984, “An Introduction to the Finite Element Method,” McGraw-Hill, N. Y.
[33]Lan, C. C. and Lee, K. M., 2008, “An Analytical Contact Model for Design of Compliant Fingers,” ASME Journal of Mechanical Design, 130, 011018.
[34]Lan, C. C., 2008, “Analysis of Large –Displacement Compliant Mechanisms Using an Incremental Linearization Approach,” Mechanism and Machine Theory, 43, pp. 641-658.
[35]Harary, F., 1969, “Graph Theory,” Addison-Wesly.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top